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Lecon 153 : Valeurs propres, vecteurs propres. Calculs exacts ou
approchés d’éléments propres. Applications.

1 Le rapport du jury

Rapport de jury

Cette lecon doit aborder le bagage théorique propre aux vecteurs propres et aux valeurs propres
et mettre en lumiere I'exploitation de techniques d’algebre ou d’analyse pour aborder leur recherche.
Apres avoir exploré la détermination théorique exacte des éléments propres, on s’intéresse a
des exemples de matrices dont les éléments propres sont remarquables (matrices compagnons, matrices
circulantes, matrices d’ordre fini, matrices stochastiques...) et donne des exemples de situations ot
la connaissance d’éléments propres s’avere utile. On doit connaitre les limites du calcul exact,
méme si le cadre mathématique nécessaire est non exigible et hors programme, et introduire sur R
ou C une ou plusieurs méthodes itératives, dont on démontre la convergence. On peut citer les
méthodes de la puissance, puissance inverse et QR pour la recherche d’éléments propres. Les notions de
norme matricielle, de rayon spectral doivent étre maitrisées. Le lien avec la convergence des suites du
type X,1+1 = AX,, doit étre connu et illustré. On peut aussi s’intéresser a la localisation des valeurs
propres.

Pour aller plus loin, on peut aborder la problématique du conditionnement en distinguant le
probleme général et le cas particulier des matrices auto-adjointes, s’intéresser aux liens qui peuvent
aussi étre faits avec la théorie des représentations et la transformée de Fourier rapide, ainsi qu’au
comportement de la suite des itérées de matrices stochastiques ou plus généralement de matrices a
coeflicients positifs, au moins dans des cas particuliers.

Commentaires généraux C’est une legon tres riche qui permet d’aborder de nombreux domaines : outre bien
évidemment la réduction des endomorphismes, le jury attend que les candidats s’intéressent a ’analyse numérique et
proposent des algorithmes de calculs approchés (ce qui devrait enchanter les candidats d’option B). Parmi les autres
suggestions (non obligatoires, comme 'indique le “pour aller plus loin”!) du rapport, les plus accessibles me semblent
I’étude du conditionnement, et, pour celles et ceux d’entre vous qui connaissent le théoreme de Perron-Frobenius,
des matrices stochastiques ou positives.

2 Commentaires détaillés et pistes a creuser pour la lecon

2.1 Généralités et aspects théoriques

e Attention, ce n’est pas une lecon de diagonalisation ou de trigonalisation. Il y aura des éléments communs
avec les lecons 150, 152 et 156, mais ne les recyclez pas entierement. Choisissez des résultats faisant intervenir
les éléments propres et énoncez vos résultats a 1’aide de formulations les mettant en avant.

e Vous devez comprendre que le probleme de la détermination des valeurs propres des matrices est
équivalent a la détermination des racines des polynémes. Vous savez bien que si on sait trouver les
racines des polyndmes, alors & ’aide du polynéme caractéristique (ou minimal), on saura calculer les valeurs
propres des matrices. N’oubliez pas que, réciproquement, si on sait déterminer les valeurs propres des matrices,
alors a 'aide des matrices compagnons, on saura calculer les racines des polynémes puisque le polynéme
caractéristique de la matrice compagnon d’un polynéme P est P.

Cette équivalence établie, on peut alors dire que le calcul exact n’est pas toujours possible. En effet, la théorie
de Galois (qui n’est pas au programme) permet de démontrer qu’a partir du degré 5, il n’y a pas de formule



“simple” (du type %‘({m) exprimant les racines d’un polynéme a partir de ses coefficients a ’aide des
opérations usuelles 4+, —, X, - et des racines n-iémes.

Une fois qu’on a déterminé les valeurs propres d’une matrice M, le calcul des vecteurs propres devient un
“simple” systeme d’équations a résoudre : Mx = Ax pour A valeur propre de M. On dispose alors de méthodes
exactes, comme par exemple la méthode du pivot de Gauss.

e Vous devez connaitre les différentes notions de multiplicités des valeurs propres (minimale m,,, algébrique
m, et géométrique my, voir I'exercice 0 pour les définitions) et savoir les comparer (voir 'exercice I & nouveau).
Dans cette lecon, il peut étre intéressant de reformuler les criteres de diagonalisabilité que vous connaissez
bien a l'aide de ces multiplicités. Le critere de diagonalisabilité a l'aide du polynéme minimal devient : “M
est diagonalisable si et seulement si s est scindé et pour toute valeur propre A, m,,(\) = 1”. Le critere de
diagonalisabilité a ’aide du polynéme caractéristique devient “M est diagonalisable si et seulement si x s est
scindé et pour toute valeur propre A, mq(A) = mg(A)”.

e Beaucoup de propriétés des matrices se reformulent & 1’aide des valeurs propres. Une matrice est non inversible
si et seulement si 0 en est valeur propre. Sur un corps algébriquement clos, la trace et le déterminant s’expriment
simplement a ’aide des valeurs propres comptées avec multiplicité algébrique, et une matrice est nilpotente
si et seulement si sa seule valeur propre est 0.

e Dans le cas autoadjoint sur K = R ou C, en plus de la diagonalisabilité, le théoréeme spectral donne des
propriétés des éléments propres : les valeurs propres sont réelles et les sous-espaces propres sont deux a deux
orthogonaux. Par ailleurs, le caractére positif (resp. défini positif) d’'un endomorphisme autoadjoint s’exprime
a laide de la positivité (resp. stricte positivité) des valeurs propres. Enfin, le théoréme du minimax donne une
expression variationnelle des valeurs propres d’un endomorphisme autoadjoint (voir exercice B) et posséde des
applications intéressantes, dont certaines sont présentes dans [6] ou [i].

e L’application qui & une matrice associe ses valeurs propres (complexes) est continue. Cette assertion mérite
des explications : est-ce qu’on compte les valeurs propres avec multiplicité 7 Comment les ordonne-t-on? La
bonne notion pour répondre a ces questions est la topologie quotient, mais c’est délicat et pas au programme.
La formulation adoptée par [2] est plus élémentaire. La voici. Soit (Ay), oy une suite de matrices de M., (C)
qui converge vers une matrice A. On peut ordonner les valeurs propres (\;); <, ,, de A et, pour chaque k € N,
les valeurs propres (Ar;),<;<, (comptées avec multiplicité algébrique) de facon & ce que pour tout ¢ € [1,n],

Ak — A
k—+4oco

e Le rayon spectral p(M) d’une matrice complexe M est le maximum des modules de ses valeurs propres. Ce
n’est pas une norme sur M, (C), mais il a des liens avec les normes subordonnées : il permet d’exprimer la
norme subordonnée & la norme euclidienne (ce qui permet de montrer que p est une norme sur S, (R)) et p(M)
est la borne inférieure des || M ||| pour |||-|| norme subordonnée. Ce résultat permet de caractériser les matrices

M dont la suite des puissances (M wen converge vers 0 : ce sont les matrices de rayon spectral strictement

k
inférieur & 1. On peut exprimer le rayon spectral par la formule de Gelfand : p(M) = . lim ||M k ||1/ . Pour
— 400

tout cela, voir par exemple [5]. Le résultat sur la convergence vers 0 de (M*), < Permet de donner un critére
de convergence de méthodes itératives de résolution de systémes linéaires. On y revient tout de suite.

2.2 Applications en analyse numérique

Méthodes itératives de résolution de systémes. Pour résoudre le systéme Az =b ou A € GL,,(R), b € R”
et d’inconnue z € R™, une méthode générale est de décomposer A sous la forme

A=M-N

ot M est une matrice inversible particulierement facile & inverser, puis de construire une suite (1), oy partant
de zg € R™ et vérifiant Mxy1 = Nzy + b7, autrement dit Thyl = M_l(ka + b). L'erreur ey, := z — x vérifie
e = (M -IN )k eg. Par conséquent, d’apres le résultat précédemment évoqué sur la caractérisation des suites de
puissances qui convergent vers 0, la méthode converge pour tout choix de zq si et seulement si p (M -IN ) <1l:le
probléme de convergence se raméne a un probleme de localisation de valeurs propres.

Le choix de la décomposition A = M — N est donc crucial. On note D la diagonale de A, — F sa partie triangulaire
inférieure stricte et —F' sa partie triangulaire supérieure stricte. Dans le cas ou tous les coeflicients diagonaux de A

1. L’idée étant que si la suite (zx) converge, sa limite ¢ doit vérifier M{ = N{+ b, c’est-a-dire (M — N)¢ = b, autrement dit A¢ = b,
c’est-a-dire £ = x.



sont non nuls, en prenant M = D et N = D — A, on obtient la méthode dite de Jacobi. En prenant M = D — FE
et N =M — A= F, la méthode est appelée méthode de Gauss-Seidel. On peut la raffiner pour obtenir la méthode
de relaxation.

Pour ce théme, on peut consulter par exemple [d] page 155 et suivantes ou bien [il] page 95 et suivantes.

Conditionnement d’un systéme linéaire. Soit A € GL,(R) et u € R™. Le systéme d’équations Az = u
d’inconnue x € R™ posseéde une unique solution : x4, = A~ lu. Par ailleurs, il est classique que 4 — A1 est
continue sur GL,,(R), donc la solution x4, est une fonction continue de (A,u) : lorsque A tend vers A et @ tend
vers u, la solution z 4 ; de Az = @ doit tendre vers x Au- Néanmoins, cet argument théorique ne donne pas de borne

explicite sur 'erreur Hx Aia— T A’“H et en pratique, on observe parfois une tres grande erreur alors que A et @ sont

trés proches de A et u (voir exemples dans [@] et []). C’est fAcheux car, en pratique, les ordinateurs travaillent avec
des approximations des nombres réels : quand on leur demande de résoudre le systeme Ax = wu, ils résolvent un
systeme du type Ax = u ou A et @ sont des approximations de A et u.

La notion de conditionnement d’un systéme linéaire permet d’expliciter une borne sur I'erreur ‘ Tia— TAul-
L’erreur est d’autant plus petite que le conditionnement est petit. Ce conditionnement dépend du choix d’une norme
sur R™. Lorsqu’on choisit la norme euclidienne, il s’exprime a 'aide de valeurs propres, ce qui fait le lien avec la

legon. On pourra consulter [{] ou [@] pour en savoir plus sur le conditionnement. Voir aussi I'exercice 0.

2.3 Localisation de valeurs propres

Le calcul exact des valeurs propres n’étant pas toujours possible, on peut essayer de déterminer une zone ol
elles se situent. C’est le principe de la localisation des valeurs propres.

Rayon spectral. Tout ce qu’on a dit précédemment du rayon spectral s’inscrit dans les probléemes de localisation
des valeurs propres : par définition, les valeurs propres (complexes) d’une matrice M sont dans le disque D(0, p(M)).

Disques de Gerschgorin. Le résultat le plus basique de localisation des valeurs propres est celui des disques

de Gerschgorin.? 1l indique que, pour une matrice A € M,,(C), si on note D; = D | a;;, Z a;; | le i-ieme
JElL,nI\{i}

disque de Gerschgorin, alors les valeurs propres de A sont dans 'union des D;. C’est un résultat classique que vous

trouverez dans de nombreux livres, par exemple [8] ou [2]. On peut le raffiner de plusieurs maniéres :

— Comme les valeurs propres de AT sont les mémes que celles de A, en notant D} les disques de Gerschgorin de

AT ona
Sp(A) (U Di> N (U DQ) .
i=1 i=1
1 3 5
— Certains disques ne contiennent aucune valeur propre. Par exemple, pour la matrice A = | 0,01 -1 1],
0 5 0
les valeurs propres sont (environ) —2,78; 1,87 et 0,91. Le deuxiéme disque de Gerschgorin D (—1; 1,01) n’en

contient aucune.

En revanche, si on s’intéresse aux composantes connexes (C;), <<k de U}, D;, et que, pour chaque j, on note
n; le nombre de disques D; qui constituent C}, alors on peut dire qu'il y a n; valeurs propres (comptées avec
multiplicité algébrique) dans C;. Ce joli résultat se trouve dans [2]. Il utilise la continuité du spectre mentionnée
plus haut. Le duo “continuité du spectre et raffinement de Gerschgorin” peut faire un joli développement.
Au passage, ce raffinement montre que si les disques de Gerschgorin de A sont deux & deux disjoints, alors
chaque disque contient exactement une valeur propre. Il y a donc n valeurs propres distinctes, ce qui montre
que A est diagonalisable.

2. Comme souvent pour les noms de mathématiciens russes, il existe de nombreuses variantes de l’écriture en alphabet latin :
Gershgorin, Guerchgorine... Ne soyez pas étonnés si vous rencontrez plusieurs orthographes.



Conditionnement d’un probléme de valeurs propres. C’est le retour du conditionnement, mais dans un
autre contexte. Il n’est plus ici question de résoudre un systeme linéaire mais de localiser les valeurs propres d’une
matrice diagonalisable perturbée, c’est-a-dire de la forme A+¢ ou A € M,,(C) est diagonalisable et ot ¢ € M,,(C).
Voir par exemple [l et Pexercice B.

2.4 Calculs approchés de valeurs propres et vecteurs propres

Toujours en raison de I'impossibilité du calcul exact des valeurs propres, on cherche a construire des suites
qui convergent vers une/des/les valeur(s) propre(s) d’une matrice. De nombreuses méthodes existent, certaines
permettant d’approcher ’ensemble du spectre, d’autres seulement certaines valeurs propres. Certaines méthodes
approchent les vecteurs propres en méme temps que les valeurs propres et d’autres non. Certaines méthodes sont
valables pour presque toutes les matrices, d’autres uniquement pour une classe restreinte de matrices (typiquement
les matrices symétriques). Je vous renvoie a nouveau vers les livres [d] et [1]. Je ne vais aborder que les méthodes
citées par le rapport du jury : puissance, puissance inverse et QR.

Méthode de la puissance. Elle permet de calculer la valeur propre dominante (c’est-a-dire de plus grand
module) A d’une matrice diagonalisable réelle A, lorsque A est simple et strictement positive. Elle s’exprime tres
simplement : partant d’un vecteur unitaire xg € R™ dont la composante selon le sous-espace propre E) est non
nulle, on pose Y11 = Axg et Ty = m (o1 la norme utilisée est la norme euclidienne usuelle). La suite (1), oy

converge alors vers un vecteur propre unitaire associé a la valeur propre A et la suite (||lyx||) ey vers A.

k
La preuve de convergence est trés simple, voir par exemple [d]. La vitesse de convergence est en (|‘—>f|) ou p est

la deuxieme plus grande valeur propre de A en module.

Méthode de la puissance inverse. C’est la méthode de la puissance appliquée & A~1. Elle permet donc de
calculer la valeur propre de plus petit module lorsque celle-ci est strictement positive.

Méthode QR. C’est une méthode qui permet d’approcher 'ensemble du spectre de matrices assez générales.

Elle se base sur la décomposition QR des matrices, qui est une reformulation de 'algorithme d’orthonormalisation

de Gram-Schmidt. Rappelons le résultat. Pour toute matrice M € M, (R), il existe une matrice orthogonale Qs

et une matrice triangulaire supérieure R); a coefficients diagonaux positifs telles que M = QaRas. Si M est

inversible, alors les coefficients diagonaux de Ry, sont strictement positifs (ce que I'on notera Ry € T.FH(R) et la

décomposition est unique. Encore mieux, I'application GL,(R) — O,(R) x T,/ T(R) est un homéomorphisme.
M = (Qum, Rar)

La méthode QR consiste a partir d'une matrie A = Ag, puis a poser Ax11 = RpQr ou Ap = QrRk est la
décomposition QR de Ag. Sous quelques hypotheses techniques, la matrice triangulaire inférieure extraite de Ay
converge vers une matrice diagonale dont les coefficients diagonaux sont les valeurs propres (complexes) de A.

Le livre [0] prouve la convergence de la méthode. Cela peut faire 'objet d’'un développement (un peu tech-
nique).

3 Exercices

3.1 Enoncés
Exercice 1 (Notions de multiplicités, [8]). Soit M € M,,(K) et A une valeur propre de M. On définit les multipli-
cités :

— minimale m,,(\) comme la multiplicité de A en tant que racine du polynéme minimal gy ;

— algébrique m,(\) comme la multiplicité de A en tant que racine du polynéme caractéristique x s ;

— géométrique mgy(A) comme la dimension du sous-espace propre ker(M — AL,).

1. Montrer que mq()) est la dimension du sous-espace caractéristique ker (M — AL,)™s(V).

2. Montrer que 1 < mg(A) < mqa(A) et 1 < my,(A) < mg(N).

3. Montrer qu’il n’y a en général pas d’ordre entre m,, et m,.

4

. Montrer que mg(A) = mq(A) si et seulement si m,,(\) = 1.



Exercice 2 (Valeurs propres de la comatrice, [8]). Soit A € M,,(C). Déterminer les valeurs propres de la comatrice
de A en fonction de celles de A.
On distinguera selon le rang de A.

Exercice 3 (Norme subordonnée a la norme euclidienne). Soit || - ||2 la norme euclidienne usuelle sur R™ et |||,
la norme subordonnée associée, sur M, (R).
1. Montrer que pour tout A € M, (R), |||A\H§ = p (AT A) = p (AAT) ou p désigne le rayon spectral.

2. En déduire que p définit une norme sur l'espace S,,(R) des matrices symétriques réelles de taille n.

Exercice 4 (Conditionnement, [i]). Soit || - || une norme sur R™ et ||-|| la norme subordonnée associée sur M, (R).
Le conditionnement d’une matrice A € GL,,(R) est cond(A) = |||A|||H‘A_1|H

Soit A € GL,(R), b € R™\ {0} et u € R™\ {0} la solution de Au = b. Soit b € R™ et @ la solution de A = b.

[o-2]
ol

1. Montrer que 1“=2l < cond(A)

[

Soit A € M, (R). On ne la suppose pas forcément inversible, mais on suppose que I’équation Az = b a une solution,
qu’on note 4.
4-4]
1Al
Le conditionnement permet donc de contrdler 'erreur u — @ (resp. u — @) de la solution en fonction de I'erreur
b—b (resp. A — /1) des données du systeme. Plus il est petit, meilleur est ce controle.

3. Montrer que pour tout A € GL,(R), cond(A4) > 1.

2. Montrer que 1= < cond(4)

[

On suppose désormais que || - || est la norme euclidienne usuelle sur R™.

4. Calculer le conditionnement de A en fonction de certaines valeurs propres de AT A.
On utilisera exercice précédent.

5. Montrer que le conditionnement d’une matrice orthogonale est 1. Les matrices orthogonales ont donc un
conditionnement optimal pour la norme euclidienne usuelle.

Exercice 5 (Conditionnement d’un probléme aux valeurs propres, théoréme de Bauer-Fike, [0]). 1. Soit [|-[| une
norme subordonnée sur M, (C). Montrer que pour tout A € M,,(C), ||A]| > p(A).

2. Montrer que le résultat reste vrai pour une norme sous-multiplicative (pas nécessairement subordonnée).

3. Soit M € M,,(C) et || - || une norme sous-multiplicative. On suppose que I,, + M n’est pas inversible. Montrer
que ||M]| > 1.
Soit A € M,,(R) une matrice diagonalisable de valeurs propres Ay, ..., \, et P € GL,(R) telle que P"1AP =
D := diag(A1, ..., Ay). Soit ||-|| une norme sous-multiplicative telle que pour toute matrice diagonale d = diag(ds, . .. ,d,),
|d|| = max; |d;].® Soit ¢ € M,(C). On veut montrer que le spectre de A + ¢ est inclus dans [J]_, D; ou
D, ={z€C; |z—X\]| <cond(P)|e|}.

4. Montrer que pour t € C différent de tous les A;, on a
P Y (A+e—tl,)P=(D—tl,) (I.+ (D —tL,) P 'eP).

5. En déduire que, si ¢ est en outre une valeur propre de A + ¢, alors 1 < ||(D — tL,) || [|[P7|| [le]| | P|| puis
conclure en calculant ||(D — tI,) .

Comme la borne est valable pour n’importe quelle matrice de passage P telle que P~! AP est diagonale, on peut
I’optimiser : on définit le conditionnement de A relativement au calcul des valeurs propres par

I'(A) = inf {cond(P) ; P € GL,(C) et P"'AP = D}

et on a alors
n

sp(A+¢) C UDi
=1
ol
Di={2€C; [z = XN| <T(A)llell} -

3. C’est le cas des normes subordonnées aux normes || - ||1, || - ||2 et || - [|oo-




Exercice 6 (Convergence vers 0 de la suite des puissances, [§]). Soit A € M,,(C).
1. Montrer que p(A) = inf {||A|l ; |||l est une norme subordonnée}.
2. Montrer que les conditions suivantes sont équivalentes :
(i) il existe une norme subordonnée ||-|| telle que ||| A]| < 1;
(i) la suite (A*)
(iii) p(A) < 1.
3. Montrer que dans ces conditions, la série > A* converge.
Ak

ey converge vers 0;

4. Montrer que pour toute norme subordonnée |||, = p(A).
—+o0

5. Montrer que la limite précédente reste vraie pour n’importe quelle norme sur M,,(C).

Exercice 7 (Caractére borné de la suite des puissances, [5]). Soit A € M, (C). Montrer que (Ak)keN est bornée
si et seulement si [p(A) < 1 et pour toute valeur propre A de A telle que |A| = 1, le sous-espace propre associé & A
est égal au sous-espace caractéristique associé a /\].

Exercice 8 (Théoréme du minimax, [G6] ou [[@]). Soit (E, (-, -)) un espace euclidien de dimension n € N* et f € L(E)
un endomorphisme autoadjoint. D’apres le théoréme spectral, f est diagonalisable en base orthonormée. On note
A1 < ... < A, ses valeurs propres rangées dans lordre croissant. Pour k € [1,n], on note Si Pensemble des
sous-espaces vectoriels de E de dimension k.

Montrer que pour tout k € [1,n],

A\, = mi = i .
FT R R T = e U
xT||= z||=

Exercice 9 (Deux applications de 'exercice précédent, [G] ou [7]). Soit E un espace euclidien de dimension n.

1. Soit f,g € L(E) autoadjoints, de valeurs propres respectives ordonnées A\; < ... < A\, et pu; < ... < pyp. On
suppose que pour tout « € E, (f(z),z) < (g(z),z). Montrer que pour tout k € [1,n], A\x < ug.

2. (Entrelacement de Cauchy) Soit f € L(FE) autoadjoint, G un hyperplan de E, p la projection orthogonale de
sur G et g 'endomorphisme induit sur G par po f.

(a) Montrer que g est autoadjoint.
Il est donc diagonalisable. On note py < ... < p,_1 ses valeurs propres.
(b) Montrer que Ay < g < Aa < g <o < Aot < i1 < A

3.2 Eléments de correction

Solution 1. 1. On rencontre souvent la preuve dans le cas trigonalisable, ou elle est un peu plus simple. Je vous
I’écris dans le cas général.

Ecrivons X
X = (X = 2™ x H P
j=1
la décomposition de x s en produit d’irréductibles. D’apres le théoréeme de Cayley-Hamilton et le lemme des
noyaux,
k
K" = ker (xar(M)) = ker ((M - )\In)m“(’\)) ® @D ker (P (M)™). (1)
j=1

De plus les sous-espaces apparaissant dans cette décomposition sont stables par M (ce sont des noyaux de
polynémes en M, donc de matrices qui commutent avec M). Notons g ’endomorphisme induit par M sur

ker ((M - )\In)m“o‘)) et f; celui induit sur ker (P;(M)®) pour j € [1,k]. Dans une base B adaptée & la

décomposition (O), la matrice de M est diagonale par blocs, égale a

MB(M) = diag (Mé(g)vMBl (f1)7 i "MBk (fk)) )



d’out
k

xar = xg % [ x5,-
j=1
En outre, A n’est valeur propre d’aucun des f; (sinon, un vecteur propre associé¢ serait a la fois dans un
ker (P;(M)®9) et dans ker ((M - AIn,)m“'(A)), ce qui est interdit par la somme directe (W), donc A n’est racine

d’aucun des xy,. La multiplicité m,(A) de A comme racine de xs est donc la multiplicité de A comme racine
de xq-

Mais g est annulé par (X — )\)m“()‘). On en déduit que X est sa seule valeur propre et que, étant annulé par
un polynome scindé, g est trigonalisable, donc x4 est scindé. Par conséquent, x4 est une puissance de X — A,
et le polyndme caractéristique ayant pour degré la dimension de lespace, x4 = (X — \)dim ker((M—=AL)™e ™)
D’apres le lien établi précédemment entre m,(\) et la multiplicité de A comme racine de x4, on conclut bien

que my(A) = dim ker ((M - )\In)mao‘))

2. Puisque X est valeur propre de M, ker (M — Al,,) # {0}, donc my(A) > 1. En outre, ker(M — X,,) C
ker ((M - )\In)ma(/\)), donc mgy(A) < dimker ((M - )\In)ma(’\)) qui est mq(A\) d’apres la question précédente
d’on

1 <mg(A) < ma(A).
De méme, A étant valeur propre de M, c’est une racine de pps, d’ott my,(A) > 1. Par ailleurs, d’apres le
théoréme de Cayley-Hamilton, s divise x s, done my, (A) < mgq(N), d’olt

1 <mpm(A) <ma(N).

3. Pour M = (8 8), on a my(0) =2 et my,(0) =1 car pp = X, d’ott my(0) > m,, (0). Pour M = (8 é) on
amg(0) =1 et mp(0) =2 car pupy = X2, dott my(0) < myy,(0).

4. On reprend la décomposition () et les endomorphismes induits. On a cette fois ppr = PPCM (g, tofy, - - - ey, )s
donc m, (M) est le maximum des multiplicités de A\ comme racine de p, et des py,. Comme précédemment,
A n’est racine d’aucun py,, donc mp, () est la multiplicité de A comme racine de p,. En outre, u, divise

(X — A)™e™) car ce polynéme annule g, donc 1, est une puissance de X — \, et finalement
py = (X = )0,
On a donc my,(A) = 1 si et seulement si g = )\Idkcr((Man)ma(A)). Cette condition est équivalente a dire

que ker ((M - )\In)m"(/\)), qui contient toujours ker (M — AI,), lui est en fait égal. En raison de I'inclusion

toujours vraie, I’égalité de ces espaces équivaut & I’égalité de leurs dimensions, c’est-a-dire & mgy(X) = mq(A).

Solution 2. Sin =1, alors Com(A) = (1) a 1 pour unique valeur propre. Dans la suite, on suppose n > 2.
On note Com(A) la comatrice de A. On rappelle que son coefficient (i, j) est (—1)"A,; ; o A; ; est le déter-
minant de la matrice obtenue en supprimant la ligne ¢ et la colonne j de A. On rappelle aussi que

ACom(A)T = Com(A)T A = det(A)T,. (2)

e Le rang d’une matrice est la taille maximale de ses déterminants extraits non nuls. Ainsi, si rg(A4) < n — 2,
alors aucun déterminant extrait de A de taille n — 1 n’est non nul, d’ott Com(A) = 0. Dans ce cas, 0 est la
seule valeur propre de Com(A).

e Sirg(A) = n, alors A est inversible et Com(A)T = det(A)A~!. Les valeurs propres de Com(A) sont donc
celles de det(A)A~1t, cest-a-dire les detf(A) pour A valeur propre de A (et les multiplicités de de%(‘q) sont les
mémes que celles de A pour A).

e Il reste le cas ot rg(A) = n — 1. Dans ce cas, A n’est pas inversible donc (2) conduit & ACom(A)T = 0, et
donc Im (Com(A4)7) C ker A, d’ou

rg(Com(A)) = rg (Com(A4)”) < dimker(4) =1,

ou la derniére égalité vient du théoreme du rang. De plus, le résultat déja rappelé sur le rang comme taille
maximale d’un déterminant extrait non nul montre qu’il existe un coefficient de Com(A) non nul, et donc



rg(Com(A)) > 1, d’ou finalement rg(Com(A)) = 1. Par conséquent, 0 est valeur propre de Com(A) de
multiplicité géométrique n — 1, donc de multiplicité algébrique égale & n — 1 ou a n.

Il reste & trouver une éventuelle derniére valeur propre A de Com(A).® Comme la trace d’une matrice est
la somme de ses valeurs propres répétées selon les multiplicités algébriques, A = tr(Com(A)). Par continuité
de la trace et de M + Com(M)% ona A = }51(1) tr(Com(A + ¢1,,)). Mais Com(A) n’ayant qu’un nombre fini
de valeurs propres, pour ¢ > 0 assez petit, Com(A + tI,,) est inversible, donc ses valeurs propres sont les
det(}\’?ﬁl") = szlj(ifﬂ) =11, £ (Ar +t) ot les \; sont les valeurs propres de A, répétées avec multiplicités
algébriques, d’apres le cas inversible traité précédemment. Ainsi,

tr(Com(A + tI,)) = > (A +1) — ST =x

J=1k#j =1 k)

On sait que 0 est valeur propre de A car A n’est pas inversible. Disons par exemple que A; = 0. Alors dans la
somme précédente, il ne reste que
n
A= ] M
k=2

Remarque : dans ce dernier cas, on peut dire quand Com(A) est diagonalisable. En effet, la multiplicité géomé-
trigue de 0 pour Com(A) est n — 1. Si A =0, autrement dit si la multiplicité algébrique de 0 pour A est supérieure
ou égale a 2, alors A n'est pas diagonalisable (sans quoi elle serait nulle). Si en revanche X # 0, alors ker(M — A1)
est non nul et en somme directe avec ker M. Pour des raisons de dimension, on a alors E = ker M @ ker(M — A1)
donc M est diagonalisable.

Solution 3. 1. Soit A € M, (R) et z € R"\ {0}. On a
<||Ax||2)2 (A, Ax)

(]2 (z, )
_ (AT Az, x)

(x, )

La matrice AT A est symétrique réelle, donc diagonalisable en base orthonormée. Elle est en outre positive
car pour tout z € R™, (z, AT Az) = (Az, Az) > 0. Notons 0 < A\; < ... < A, = p (AT A) ses valeurs propres
(répétées avec multiplicités algébriques) et (eq,...,e,) une base orthonormée de vecteurs propres associés a
ces valeurs propres. Décomposons = dans cette base en x = Z?:l x;e;. On a alors

<|A~T||2>2 7 <Z?:1 Aitiei, 225 ffjej>
”xHQ Z?:l x?

_ Z?:l )\1‘%12

D T
i=1 L5
<SS 3
D i1 T
p— An

=p (ATA) .

2
En passant a la borne supérieure, il vient \HA|||§ < p(ATA). En outre(”l’éejlll?) =X, = p(ATA) donc

2

2
|||AH|§ = Supg- (”AIHZ’) > p (AT A), ce qui prouve
lI4Jl3 = p (AT 4).

Il reste & prouver que p (ATA) =p (AAT). Supposons d’abord que p (ATA) > (. Soit v un vecteur propre de
AT A associé & une valeur propre A de module maximal, qui est non nulle d’aprés ’hypothese p (ATA) > 0.

4. Eventuelle car si la multiplicité algébrique de 0 est n, on les a déja toutes, auquel cas A = 0.
5. Qui découle de la continuité du déterminant.



Alors AAT Au = Alu = MAu. En outre, puisque A # 0 et AT Au = Au # 0, on a Au # 0. Par conséquent, Au
est un vecteur propre de AAT pour la valeur propre A, ce qui prouve que

p (AT A) < p(4AAT). (3)

Dans le cas ou p (ATA) =0, on a aussi p (AAT) = 0. En effet, dans le cas contraire, on peut appliquer (3)
dans le cas strictement positif avec AT & la place de A, d’oi1 0 < p (AAT) <p (ATA), ce qui est absurde.
L’inégalité (8) est donc vraie dans tous les cas. En I'appliquant avec AT au lieu de A, on obtient I'inégalité
inverse, donc 1’égalité.

2. Si A € S,(R), alors A est diagonalisable en base orthonormée. Dans une telle base, la matrice de AT A = A2
est diag(u, ..., u?) ot les p1; sont les valeurs propres de A. On a donc p (AT A) = p(A)? et donc || A|l, = p(A).
Comme p coincide avec |[||-||, sur S, (R), c’est une norme sur S, (R).

Solution 4. 1. De Au = b et Ai = b, on tire A (u — @) = b — b, c’est-a-dire u — @ = A~ (b — B) Utilisant la

propriété de sous-multiplicativité | Mz|| < ||M||||z] des normes subordonnées, il vient

= all < [} ||p - 5] (4)
Par ailleurs, de Au = b, on tire ||b]| = ||Au|| < ||Al||u]|, c’est-a-dire
Lo_ Al
1A (5)
[l = o]

En multipliant (#) et (8), on obtient le résultat demandé.
2. De Au=0b= [1117 on tire

d’out

.Q>

Par conséquent, [lu — | < |||A~

ol < - el A 2L
E AT AT
3. Ona
1= Lall = A4~ | < AR} A~ ) = cond(a)
4. D'aprés la premiére égalité de lexercice précédent, [|A| = p (AT A). De lautre égalité de I'exercice précédent

appliquée & A~!, on tire |||A*1H| =p (A’l (Afl)T> =p ((ATA)%). Les valeurs propres de (ATA)f1 sont
les inverses de celles de AT A, qui sont positives. Par conséquent,

T —1) _ 1
P ((A 4) )= A (AT A)

ou A1 désigne la plus petite valeur propre. D’ou

(AT )

cond(A) = N (ATA)

5. Si A est orthogonale, alors AT A = 1,,, donc la seule valeur propre de AT A est 1, donc la question précédente
montre que cond(4) =1 =1.



Solution 5. 1. Soit || - || telle que ||-||| est subordonnée a || - ||. Soit A € M,,(C). Soit v un vecteur propre associé
a une valeur propre A de A de module p(A). On a ||A]| > llAu] [A| = p(A).

[
2. Soit A € M,,(C) et u un vecteur propre de A associée a une valeur propre A de A de module p(4). Comme
u # 0, il existe v € R™ tel que uv? # 0 (v étant une matrice ligne, uv” est une matrice de taille n). On a
alors AMuv” = Auv™. En prenant la norme, il vient

o) ™| = [[ A < A ]

Comme uv® # 0, en divisant par Huv , on obtient le résultat.

T
3. L’hypothese signifie que —1 est valeur I|)ropre de M, en particulier p(M) > 1, donc | M|| > p(M) > 1.
4. Soit t € C différent de tous les \;. On a
P Y A+e—tl,)P=D+ P 'cP 11,
=D —tl,+P P
=(D—-tl,) (I, + (D —tl,)"'P 'cP)
ou on a pu inverser D — tI,, parce que t n’est pas valeur propre de D.

5. Sous I’hypothese supplémentaire, le membre gauche de ’égalité précédente n’est pas inversible, donc le membre
de droite non plus. Comme D — tI,, reste inversible, c’est que I,, + (D — tI,) 1 P~eP n’est pas inversible.
D’apres la question 3, on a donc

1< (D =tL,) "' P eP| < ||[(D = L) [P~ el || Pl
ou la deuxiéme inégalité provient de la sous-multiplicativité de la norme. D’apres ’hypotheése sur la norme
1
des matrices diagonales, on a H(D — ﬂn)_1H = max m En particulier, il existe j € [1,n] tel que
<isn [A; —
1D = 1)~ = 5, dot
A =t < [[P7H[ el 1] = cond(P)]lell,

autrement dit
t e Dj.

En conclusion, les valeurs propres de A + ¢ sont soit dans I'union des D;, soit égales a I'un des \; auquel cas
elles sont encore dans I'union des D;.

Solution 6. 1. Soit || - || une norme sur C" et |||-|| la norme subordonnée associée. Soit u € R™ \ {0} un vecteur
propre de A associé a une valeur propre A de module maximal. Alors
[Aul _ [Allull
[[ull [
e A _ 1 Au)
x u
Al = > = p(A).
240 ||| [ ]
Par conséquent, pour toute norme subordonnée |||, |All > p(4), d’ou
p(A) <inf {||A|| ; [Ill est une norme subordonnée} .

Pour montrer I'autre inégalité, nous allons construire une suite de normes subordonnées (Ng),cy (qui va
dépendre de A!) telle que Ni(A) ﬁ p(A). Ce n’est pas facile mais c’est un résultat a avoir vu au moins
—+00

une fois.

Partons de la norme || - ||oc sur R™ et calculons sa norme subordonnée ||-|| .. On a, pour M € M,(C) et
reC”,

1<i<n |4

n
Mz, = max > M;;x;
j=1

IN

n
|2loe max Y |M; 1,
j=1

1<i<n
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n
donc [[M[[|,, < >°7_, |M; ;. Choisissant dg tel que Y7, [ M, ;| = max Z |M; ;|. On écrit M;, j = |M;, ;| €l
Si<n £~

(ot Iécriture i désigne le nombre complexe usuel, pour ne pas le confondre avec I'indice, écrit i) pour j € [1,n].
On pose u = (e, ... e71). De cette fagon, |lullc =1 et

n
[Mulloo = max | M; e

1<i<n | 4=

n
—i0.
E Mio je 7

Y

‘Mlo,j|

j=1

= max Z |M; ;|.
1<i<n

Jj=1
n
- § | 0,]
Jj=1
n

Ainsi, ||M]|, > ”lj‘wu”f’" = max Z |M; ;|. Par double inégalité, il y a égalité.

Ul T 1<iln
Fixons une matrice P € GL,(C) et posons ||z]|eo,p = ||Pz|je pour x € C™. 1l est facile de voir que c¢’est une
norme sur C". De plus, en notant |||, p sa norme subordonnée, sur M, (C), on a
[M|o.p [ PM| [PM P~y -
1Ml p = sp Bt = sup e — s = —||Parr|.,

2o az0 [[Pzllac w20 Ilylleo
ou la troisieme égalité vient du fait que {Px ; z € C"\ {0}} = C™\ {0}.
Trigonalisons maintenant la matrice A. Soit k € N*. Notons (eq,...,e,) une base de trigonalisation et T" =
(T3,;) la matrice triangulaire supérieur de A dans cette base. Dans la base By, = (el, %627 k%eg” ey kn—l,len)
la matrice de A est T} = (Z7> Comme T, —— diag(T11,...,Tnn), on a [|Tkll,, ——

’ 1<q ]<n k—+o00 k—+o00

|||diag (Tl,la e 7Tn,n)|”oo = fgiagx

T;.i| = p(A), la derniére égalité venant du fait que les coefficients diagonaux

de T sont les valeurs propres de A. Mais par formule de changement de base, il existe une matrice Py, € GL,,(C)

telle que Py AP, ' = T},. On a alors || Tkl = |14/l p.- Ansi, [[Alll p, P p(A). Par conséquent,
’ ’ —+o0
p(A) > inf {||All ; Il est une norme subordonnée} .

Par double inégalité, on a 1’égalité demandée.

2. Facile avec la premiere question.

3. Il suffit de prendre une norme subordonnée telle que [|A| < 1 et d’observer que la série en question converge

absolument, donc converge (la convergence absolue entrainant la convergence car M,,(C) est complet car de
dimension finie).

. Soit k € N*. D’apres l'inégalité toujours vraie entre norme subordonnée et rayon spectral, on a |’|Ak|||1/ b
P (Ak)l/k. En trigonalisant, on voit bien que p (Ak) = p(A)*, donc pour tout k € N*, H‘l/k > p(A).
. 3 A _ pl4) AF y N . PPN ‘/
Soit € > 0. Alors p (p(A)+E) = S+ < 1, donc Ve L — 0 d’apres ce qui précede. Par conséquent,

un certain rang, d’ou |||Ak|H1/k < p(A) + € a partir d’'un certain rang. Ainsi, pour

||t

tout € > 0, il existe un rang K tel que pour tout k > K, p(A) < H‘Akml/k < p(A) + €. Par définition, on a
prouvé la limite demandée.
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5. Soit N une norme quelconque et ||-|| une norme subordonnée. Par équivalence des normes en dimension finie,
il existe deux constantes «, 8 > 0 telles que «f||-|| < N < S||-||. Par conséquent, pour tout k € N*,

o E AR < N (A9 < A

Comme (al/ k gt/ k) k—> (1,1), le résultats acquis pour les normes subordonnées montre que les deux
—+o0
termes encadrant N (Ak)l/ » convergent vers p(A). On conclut avec le théoréme des gendarmes.
Solution 7. Voir [4].

Solution 8. Démontrons par exemple la premiére égalité (la deuxiéme fait appel & un raisonnement proche). Notons

(e1,...,en) une base orthonormée de vecteurs propres de f associés aux valeurs propres Ag, ..., A,. Soit k € [1,n]
et F' un sous-espace de F de dimension k. On observe que F'N Vect(eg, ..., e,) # {0}. En effet, si c’était le cas, ces
deux espaces seraient en somme directe, et on aurait dim(F' @ Vect(eg, ..., e,)) = dim F' 4 dim Vect(e, ..., ey) =

k+n—k+1=n+1>dimFE, ce qui est impossible. Soit € F N Vect(eg,...,e,) \ {0}, qu'on peut, quitte & le
diviser par sa norme, supposer de norme 1. On décompose = sous la forme z = Z?:k x;e;. On a alors

(f(z),z) = <Z )\jmjej,ijej> = Z)\jxi > Ak2m3 = Ag.
j=k i=1 j=1 j=k

Par conséquent, max (f(x),x) > A (on le minimum existe bien par un argument de continuité-compacité). Ceci
xT
[lz]|=1
étant vrai pour tout F' € Si, on a

inf > Ak
A5, e (02 =
xl||l=

Mais pour F' = Vect(ey,...,ex), on a, en décomposant « € F' tel que ||z|| =1 en = z1e1 + ... + x)ey,

donc max (f(z),z) < A, et comme (f(eg),ex) = Ak, on a méme max (f(z),z) = Ag. Par conséquent,
Te fas
ll=ll=1 llzll=1

. .
Anf ”r;%;l(f (), 2) < A

Par double inégalité, on a donc
inf max (f(z),z) = Ag.

FeS, zeF
llzll=1

et comme la borne inférieure est atteinte pour F' = Vect(ey, ..., ex), c’est bien un minimum.

Solution 9. 1. Soit k € [1,n]. D’aprés ’hypothése, on a

. -
min Hr;lle‘ag {f(2),2) < min ”glle?g (9(z),z),
z||=1 z||=1

c’est-a-dire, d’apres le théoréme du minimax,
Ak < .

2. (a) Soit z,y € G. Comme f et p sont autoadjoints (p l'est car c’est un projecteur orthogonal) et p laisse G
invariant, on a

(9(x),y) = (po f(2),y) = (f(2),p(y)) = (f(2),y) = (z, [(y)) = (p(x), [(y)) = (x,po [(y)) = (,9(y))

donc g est autoadjoint.
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(b) On applique le théoréme du minimax a f et & ¢ : en notant SE I’ensemble des sous-espaces de E de
dimension k et S,f? I’ensemble des sous-espaces de G de dimension k, on a

Vk e [1,n], Ax = min max (f(z),z) = max  min (f(x),x)

FeSE z€F FesE_ zeF
b=t M ell=1
et
Vk € [l,n—1], pur= min max (g(z),z) = max min (g(x),z).
Fes¢ HwﬁF FesG_, HrﬁF
z||=1 " z||=1

Soit k € [1,n—1]. Si F € S{ et z € F, on a (g(z),z) = (po f(z),z) = (f(z),p(x)) = (f(x),z), donc

= min ma T),r) = min ma T),x
Hi FGSE Hajﬁgi<g( )7 > FGSkG Hmﬁ%1<f( ), >7
x||= z||=

Comme SkG CcSE ona

. .
Sin, Hglle?gff (2),2) < Sin, ”r;llelalg<1<f (2), ),
x||= x||=

c’est-a-dire
Ak < ke

Le méme type de raisonnement en utilisant 'autre égalité du théoréeme du minimax conduit a

e < Mgt
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