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Leçon 153 : Valeurs propres, vecteurs propres. Calculs exacts ou
approchés d’éléments propres. Applications.

1 Le rapport du jury
Rapport de jury

Cette leçon doit aborder le bagage théorique propre aux vecteurs propres et aux valeurs propres
et mettre en lumière l’exploitation de techniques d’algèbre ou d’analyse pour aborder leur recherche.
Après avoir exploré la détermination théorique exacte des éléments propres, on s’intéresse à
des exemples de matrices dont les éléments propres sont remarquables (matrices compagnons, matrices
circulantes, matrices d’ordre fini, matrices stochastiques...) et donne des exemples de situations où
la connaissance d’éléments propres s’avère utile. On doit connaître les limites du calcul exact,
même si le cadre mathématique nécessaire est non exigible et hors programme, et introduire sur R
ou C une ou plusieurs méthodes itératives, dont on démontre la convergence. On peut citer les
méthodes de la puissance, puissance inverse et QR pour la recherche d’éléments propres. Les notions de
norme matricielle, de rayon spectral doivent être maîtrisées. Le lien avec la convergence des suites du
type Xn+1 = AXn doit être connu et illustré. On peut aussi s’intéresser à la localisation des valeurs
propres.

Pour aller plus loin, on peut aborder la problématique du conditionnement en distinguant le
problème général et le cas particulier des matrices auto-adjointes, s’intéresser aux liens qui peuvent
aussi être faits avec la théorie des représentations et la transformée de Fourier rapide, ainsi qu’au
comportement de la suite des itérées de matrices stochastiques ou plus généralement de matrices à
coefficients positifs, au moins dans des cas particuliers.

Commentaires généraux C’est une leçon très riche qui permet d’aborder de nombreux domaines : outre bien
évidemment la réduction des endomorphismes, le jury attend que les candidats s’intéressent à l’analyse numérique et
proposent des algorithmes de calculs approchés (ce qui devrait enchanter les candidats d’option B). Parmi les autres
suggestions (non obligatoires, comme l’indique le “pour aller plus loin” !) du rapport, les plus accessibles me semblent
l’étude du conditionnement, et, pour celles et ceux d’entre vous qui connaissent le théorème de Perron-Frobenius,
des matrices stochastiques ou positives.

2 Commentaires détaillés et pistes à creuser pour la leçon
2.1 Généralités et aspects théoriques

• Attention, ce n’est pas une leçon de diagonalisation ou de trigonalisation. Il y aura des éléments communs
avec les leçons 150, 152 et 156, mais ne les recyclez pas entièrement. Choisissez des résultats faisant intervenir
les éléments propres et énoncez vos résultats à l’aide de formulations les mettant en avant.

• Vous devez comprendre que le problème de la détermination des valeurs propres des matrices est
équivalent à la détermination des racines des polynômes. Vous savez bien que si on sait trouver les
racines des polynômes, alors à l’aide du polynôme caractéristique (ou minimal), on saura calculer les valeurs
propres des matrices. N’oubliez pas que, réciproquement, si on sait déterminer les valeurs propres des matrices,
alors à l’aide des matrices compagnons, on saura calculer les racines des polynômes puisque le polynôme
caractéristique de la matrice compagnon d’un polynôme P est P .
Cette équivalence établie, on peut alors dire que le calcul exact n’est pas toujours possible. En effet, la théorie
de Galois (qui n’est pas au programme) permet de démontrer qu’à partir du degré 5, il n’y a pas de formule
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“simple” (du type −b±
√
4ac

2a ) exprimant les racines d’un polynôme à partir de ses coefficients à l’aide des
opérations usuelles +,−,×, ·

· et des racines n-ièmes.
Une fois qu’on a déterminé les valeurs propres d’une matrice M , le calcul des vecteurs propres devient un
“simple” système d’équations à résoudre : Mx = λx pour λ valeur propre de M . On dispose alors de méthodes
exactes, comme par exemple la méthode du pivot de Gauss.

• Vous devez connaître les différentes notions de multiplicités des valeurs propres (minimale mm, algébrique
ma et géométrique mg, voir l’exercice 1 pour les définitions) et savoir les comparer (voir l’exercice 1 à nouveau).
Dans cette leçon, il peut être intéressant de reformuler les critères de diagonalisabilité que vous connaissez
bien à l’aide de ces multiplicités. Le critère de diagonalisabilité à l’aide du polynôme minimal devient : “M
est diagonalisable si et seulement si µM est scindé et pour toute valeur propre λ, mm(λ) = 1”. Le critère de
diagonalisabilité à l’aide du polynôme caractéristique devient “M est diagonalisable si et seulement si χM est
scindé et pour toute valeur propre λ, ma(λ) = mg(λ)”.

• Beaucoup de propriétés des matrices se reformulent à l’aide des valeurs propres. Une matrice est non inversible
si et seulement si 0 en est valeur propre. Sur un corps algébriquement clos, la trace et le déterminant s’expriment
simplement à l’aide des valeurs propres comptées avec multiplicité algébrique, et une matrice est nilpotente
si et seulement si sa seule valeur propre est 0.

• Dans le cas autoadjoint sur K = R ou C, en plus de la diagonalisabilité, le théorème spectral donne des
propriétés des éléments propres : les valeurs propres sont réelles et les sous-espaces propres sont deux à deux
orthogonaux. Par ailleurs, le caractère positif (resp. défini positif) d’un endomorphisme autoadjoint s’exprime
à l’aide de la positivité (resp. stricte positivité) des valeurs propres. Enfin, le théorème du minimax donne une
expression variationnelle des valeurs propres d’un endomorphisme autoadjoint (voir exercice 8) et possède des
applications intéressantes, dont certaines sont présentes dans [6] ou [7].

• L’application qui à une matrice associe ses valeurs propres (complexes) est continue. Cette assertion mérite
des explications : est-ce qu’on compte les valeurs propres avec multiplicité ? Comment les ordonne-t-on ? La
bonne notion pour répondre à ces questions est la topologie quotient, mais c’est délicat et pas au programme.
La formulation adoptée par [2] est plus élémentaire. La voici. Soit (Ak)k∈N une suite de matrices de Mn(C)
qui converge vers une matrice A. On peut ordonner les valeurs propres (λi)1≤i≤n de A et, pour chaque k ∈ N,
les valeurs propres (λk,i)1≤i≤n (comptées avec multiplicité algébrique) de façon à ce que pour tout i ∈ J1, nK,
λk,i −−−−−→

k→+∞
λi.

• Le rayon spectral ρ(M) d’une matrice complexe M est le maximum des modules de ses valeurs propres. Ce
n’est pas une norme sur Mn(C), mais il a des liens avec les normes subordonnées : il permet d’exprimer la
norme subordonnée à la norme euclidienne (ce qui permet de montrer que ρ est une norme sur Sn(R)) et ρ(M)
est la borne inférieure des |||M ||| pour |||·||| norme subordonnée. Ce résultat permet de caractériser les matrices
M dont la suite des puissances

(
Mk
)
k∈N converge vers 0 : ce sont les matrices de rayon spectral strictement

inférieur à 1. On peut exprimer le rayon spectral par la formule de Gelfand : ρ(M) = lim
k→+∞

∥∥Mk
∥∥1/k. Pour

tout cela, voir par exemple [5]. Le résultat sur la convergence vers 0 de
(
Mk
)
k∈N permet de donner un critère

de convergence de méthodes itératives de résolution de systèmes linéaires. On y revient tout de suite.

2.2 Applications en analyse numérique
Méthodes itératives de résolution de systèmes. Pour résoudre le système Ax = b où A ∈ GLn(R), b ∈ Rn

et d’inconnue x ∈ Rn, une méthode générale est de décomposer A sous la forme

A = M −N

où M est une matrice inversible particulièrement facile à inverser, puis de construire une suite (xk)k∈N partant
de x0 ∈ Rn et vérifiant Mxk+1 = Nxk + b 1, autrement dit xk+1 = M−1(Nxk + b). L’erreur ek := xk − x vérifie
ek =

(
M−1N

)k
e0. Par conséquent, d’après le résultat précédemment évoqué sur la caractérisation des suites de

puissances qui convergent vers 0, la méthode converge pour tout choix de x0 si et seulement si ρ
(
M−1N

)
< 1 : le

problème de convergence se ramène à un problème de localisation de valeurs propres.
Le choix de la décomposition A = M−N est donc crucial. On note D la diagonale de A, −E sa partie triangulaire

inférieure stricte et −F sa partie triangulaire supérieure stricte. Dans le cas où tous les coefficients diagonaux de A

1. L’idée étant que si la suite (xk) converge, sa limite ℓ doit vérifier Mℓ = Nℓ+ b, c’est-à-dire (M −N)ℓ = b, autrement dit Aℓ = b,
c’est-à-dire ℓ = x.
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sont non nuls, en prenant M = D et N = D − A, on obtient la méthode dite de Jacobi. En prenant M = D − E
et N = M −A = F , la méthode est appelée méthode de Gauss-Seidel. On peut la raffiner pour obtenir la méthode
de relaxation.

Pour ce thème, on peut consulter par exemple [4] page 155 et suivantes ou bien [1] page 95 et suivantes.

Conditionnement d’un système linéaire. Soit A ∈ GLn(R) et u ∈ Rn. Le système d’équations Ax = u
d’inconnue x ∈ Rn possède une unique solution : xA,u = A−1u. Par ailleurs, il est classique que A 7→ A−1 est
continue sur GLn(R), donc la solution xA,u est une fonction continue de (A, u) : lorsque Ã tend vers A et ũ tend
vers u, la solution xÃ,ũ de Ãx = ũ doit tendre vers xA,u. Néanmoins, cet argument théorique ne donne pas de borne
explicite sur l’erreur

∥∥∥xÃ,ũ − xA,u

∥∥∥ et en pratique, on observe parfois une très grande erreur alors que Ã et ũ sont
très proches de A et u (voir exemples dans [4] et [1]). C’est fâcheux car, en pratique, les ordinateurs travaillent avec
des approximations des nombres réels : quand on leur demande de résoudre le système Ax = u, ils résolvent un
système du type Ãx = ũ où Ã et ũ sont des approximations de A et u.

La notion de conditionnement d’un système linéaire permet d’expliciter une borne sur l’erreur
∥∥∥xÃ,ũ − xA,u

∥∥∥.
L’erreur est d’autant plus petite que le conditionnement est petit. Ce conditionnement dépend du choix d’une norme
sur Rn. Lorsqu’on choisit la norme euclidienne, il s’exprime à l’aide de valeurs propres, ce qui fait le lien avec la
leçon. On pourra consulter [1] ou [4] pour en savoir plus sur le conditionnement. Voir aussi l’exercice 4.

2.3 Localisation de valeurs propres
Le calcul exact des valeurs propres n’étant pas toujours possible, on peut essayer de déterminer une zone où

elles se situent. C’est le principe de la localisation des valeurs propres.

Rayon spectral. Tout ce qu’on a dit précédemment du rayon spectral s’inscrit dans les problèmes de localisation
des valeurs propres : par définition, les valeurs propres (complexes) d’une matrice M sont dans le disque D(0, ρ(M)).

Disques de Gerschgorin. Le résultat le plus basique de localisation des valeurs propres est celui des disques

de Gerschgorin. 2 Il indique que, pour une matrice A ∈ Mn(C), si on note Di = D

ai,i,
∑

j∈J1,nK\{i} ai,j
 le i-ième

disque de Gerschgorin, alors les valeurs propres de A sont dans l’union des Di. C’est un résultat classique que vous
trouverez dans de nombreux livres, par exemple [3] ou [2]. On peut le raffiner de plusieurs manières :

— Comme les valeurs propres de AT sont les mêmes que celles de A, en notant D′
i les disques de Gerschgorin de

AT , on a

Sp(A) ⊂

(
n⋃

i=1

Di

)⋂(
n⋃

i=1

D′
i

)
.

— Certains disques ne contiennent aucune valeur propre. Par exemple, pour la matrice A =

 1 3 5
0, 01 −1 1
0 5 0

,

les valeurs propres sont (environ) −2, 78 ; 1, 87 et 0, 91. Le deuxième disque de Gerschgorin D (−1; 1, 01) n’en
contient aucune.
En revanche, si on s’intéresse aux composantes connexes (Cj)1≤j≤k de

⋃n
i=1 Di, et que, pour chaque j, on note

nj le nombre de disques Di qui constituent Cj , alors on peut dire qu’il y a nj valeurs propres (comptées avec
multiplicité algébrique) dans Cj . Ce joli résultat se trouve dans [2]. Il utilise la continuité du spectre mentionnée
plus haut. Le duo “continuité du spectre et raffinement de Gerschgorin” peut faire un joli développement.
Au passage, ce raffinement montre que si les disques de Gerschgorin de A sont deux à deux disjoints, alors
chaque disque contient exactement une valeur propre. Il y a donc n valeurs propres distinctes, ce qui montre
que A est diagonalisable.

2. Comme souvent pour les noms de mathématiciens russes, il existe de nombreuses variantes de l’écriture en alphabet latin :
Gershgorin, Guerchgorine... Ne soyez pas étonnés si vous rencontrez plusieurs orthographes.
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Conditionnement d’un problème de valeurs propres. C’est le retour du conditionnement, mais dans un
autre contexte. Il n’est plus ici question de résoudre un système linéaire mais de localiser les valeurs propres d’une
matrice diagonalisable perturbée, c’est-à-dire de la forme A+ ε où A ∈ Mn(C) est diagonalisable et où ε ∈ Mn(C).
Voir par exemple [1] et l’exercice 5.

2.4 Calculs approchés de valeurs propres et vecteurs propres
Toujours en raison de l’impossibilité du calcul exact des valeurs propres, on cherche à construire des suites

qui convergent vers une/des/les valeur(s) propre(s) d’une matrice. De nombreuses méthodes existent, certaines
permettant d’approcher l’ensemble du spectre, d’autres seulement certaines valeurs propres. Certaines méthodes
approchent les vecteurs propres en même temps que les valeurs propres et d’autres non. Certaines méthodes sont
valables pour presque toutes les matrices, d’autres uniquement pour une classe restreinte de matrices (typiquement
les matrices symétriques). Je vous renvoie à nouveau vers les livres [4] et [1]. Je ne vais aborder que les méthodes
citées par le rapport du jury : puissance, puissance inverse et QR.

Méthode de la puissance. Elle permet de calculer la valeur propre dominante (c’est-à-dire de plus grand
module) λ d’une matrice diagonalisable réelle A, lorsque λ est simple et strictement positive. Elle s’exprime très
simplement : partant d’un vecteur unitaire x0 ∈ Rn dont la composante selon le sous-espace propre Eλ est non
nulle, on pose yk+1 = Axk et xk+1 = yk

∥yk∥ (où la norme utilisée est la norme euclidienne usuelle). La suite (xk)k∈N
converge alors vers un vecteur propre unitaire associé à la valeur propre λ et la suite (‖yk‖)k∈N vers λ.

La preuve de convergence est très simple, voir par exemple [4]. La vitesse de convergence est en
(

|µ|
λ

)k
où µ est

la deuxième plus grande valeur propre de A en module.

Méthode de la puissance inverse. C’est la méthode de la puissance appliquée à A−1. Elle permet donc de
calculer la valeur propre de plus petit module lorsque celle-ci est strictement positive.

Méthode QR. C’est une méthode qui permet d’approcher l’ensemble du spectre de matrices assez générales.
Elle se base sur la décomposition QR des matrices, qui est une reformulation de l’algorithme d’orthonormalisation
de Gram-Schmidt. Rappelons le résultat. Pour toute matrice M ∈ Mn(R), il existe une matrice orthogonale QM

et une matrice triangulaire supérieure RM à coefficients diagonaux positifs telles que M = QMRM . Si M est
inversible, alors les coefficients diagonaux de RM sont strictement positifs (ce que l’on notera RM ∈ T++

n (R) et la
décomposition est unique. Encore mieux, l’application GLn(R) → On(R)× T++

n (R)
M 7→ (QM , RM )

est un homéomorphisme.

La méthode QR consiste à partir d’une matrie A = A0, puis à poser Ak+1 = RkQk où Ak = QkRK est la
décomposition QR de Ak. Sous quelques hypothèses techniques, la matrice triangulaire inférieure extraite de Ak

converge vers une matrice diagonale dont les coefficients diagonaux sont les valeurs propres (complexes) de A.
Le livre [1] prouve la convergence de la méthode. Cela peut faire l’objet d’un développement (un peu tech-

nique).

3 Exercices
3.1 Énoncés
Exercice 1 (Notions de multiplicités, [3]). Soit M ∈ Mn(K) et λ une valeur propre de M . On définit les multipli-
cités :

— minimale mm(λ) comme la multiplicité de λ en tant que racine du polynôme minimal µM ;
— algébrique ma(λ) comme la multiplicité de λ en tant que racine du polynôme caractéristique χM ;
— géométrique mg(λ) comme la dimension du sous-espace propre ker(M − λIn).

1. Montrer que ma(λ) est la dimension du sous-espace caractéristique ker
(
(M − λIn)

ma(λ)
)
.

2. Montrer que 1 ≤ mg(λ) ≤ ma(λ) et 1 ≤ mm(λ) ≤ ma(λ).
3. Montrer qu’il n’y a en général pas d’ordre entre mm et mg.
4. Montrer que mg(λ) = ma(λ) si et seulement si mm(λ) = 1.
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Exercice 2 (Valeurs propres de la comatrice, [3]). Soit A ∈ Mn(C). Déterminer les valeurs propres de la comatrice
de A en fonction de celles de A.
On distinguera selon le rang de A.

Exercice 3 (Norme subordonnée à la norme euclidienne). Soit ‖ · ‖2 la norme euclidienne usuelle sur Rn et |||·|||2
la norme subordonnée associée, sur Mn(R).

1. Montrer que pour tout A ∈ Mn(R), |||A|||22 = ρ
(
ATA

)
= ρ

(
AAT

)
où ρ désigne le rayon spectral.

2. En déduire que ρ définit une norme sur l’espace Sn(R) des matrices symétriques réelles de taille n.

Exercice 4 (Conditionnement, [1]). Soit ‖ · ‖ une norme sur Rn et |||·||| la norme subordonnée associée sur Mn(R).
Le conditionnement d’une matrice A ∈ GLn(R) est cond(A) = |||A|||

∣∣∣∣∣∣A−1
∣∣∣∣∣∣.

Soit A ∈ GLn(R), b ∈ Rn \ {0} et u ∈ Rn \ {0} la solution de Au = b. Soit b̃ ∈ Rn et ũ la solution de Aũ = b̃.

1. Montrer que ∥u−ũ∥
∥u∥ ≤ cond(A)

‖b−b̃‖
∥b∥ .

Soit Â ∈ Mn(R). On ne la suppose pas forcément inversible, mais on suppose que l’équation Âx = b a une solution,
qu’on note û.

2. Montrer que ∥u−û∥
∥u∥ ≤ cond(A)

‖A−Â‖
∥A∥ .

Le conditionnement permet donc de contrôler l’erreur u− ũ (resp. u− û) de la solution en fonction de l’erreur
b− b̃ (resp. A− Â) des données du système. Plus il est petit, meilleur est ce contrôle.

3. Montrer que pour tout A ∈ GLn(R), cond(A) ≥ 1.

On suppose désormais que ‖ · ‖ est la norme euclidienne usuelle sur Rn.
4. Calculer le conditionnement de A en fonction de certaines valeurs propres de ATA.

On utilisera l’exercice précédent.
5. Montrer que le conditionnement d’une matrice orthogonale est 1. Les matrices orthogonales ont donc un

conditionnement optimal pour la norme euclidienne usuelle.

Exercice 5 (Conditionnement d’un problème aux valeurs propres, théorème de Bauer-Fike, [1]). 1. Soit |||·||| une
norme subordonnée sur Mn(C). Montrer que pour tout A ∈ Mn(C), |||A||| ≥ ρ(A).

2. Montrer que le résultat reste vrai pour une norme sous-multiplicative (pas nécessairement subordonnée).
3. Soit M ∈ Mn(C) et ‖ · ‖ une norme sous-multiplicative. On suppose que In +M n’est pas inversible. Montrer

que ‖M‖ ≥ 1.
Soit A ∈ Mn(R) une matrice diagonalisable de valeurs propres λ1, . . . , λn et P ∈ GLn(R) telle que P−1AP =

D := diag(λ1, . . . , λn). Soit ‖·‖ une norme sous-multiplicative telle que pour toute matrice diagonale d = diag(d1, . . . , dn),
‖d‖ = maxi |di|. 3 Soit ε ∈ Mn(C). On veut montrer que le spectre de A + ε est inclus dans

⋃n
i=1 Di où

Di = {z ∈ C ; |z − λi| ≤ cond(P )‖ε‖}.

4. Montrer que pour t ∈ C différent de tous les λi, on a

P−1(A+ ε− tIn)P = (D − tIn)
(
In + (D − tIn)

−1P−1εP
)
.

5. En déduire que, si t est en outre une valeur propre de A + ε, alors 1 ≤
∥∥(D − tIn)

−1
∥∥ ∥∥P−1

∥∥ ‖ε‖‖P‖ puis
conclure en calculant

∥∥(D − tIn)
−1
∥∥.

Comme la borne est valable pour n’importe quelle matrice de passage P telle que P−1AP est diagonale, on peut
l’optimiser : on définit le conditionnement de A relativement au calcul des valeurs propres par

Γ(A) = inf
{
cond(P ) ; P ∈ GLn(C) et P−1AP = D

}
et on a alors

sp(A+ ε) ⊂
n⋃

i=1

Di

où
Di = {z ∈ C ; |z − λi| ≤ Γ(A)‖ε‖} .

3. C’est le cas des normes subordonnées aux normes ∥ · ∥1, ∥ · ∥2 et ∥ · ∥∞.
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Exercice 6 (Convergence vers 0 de la suite des puissances, [5]). Soit A ∈ Mn(C).
1. Montrer que ρ(A) = inf {|||A||| ; |||·||| est une norme subordonnée}.
2. Montrer que les conditions suivantes sont équivalentes :

(i) il existe une norme subordonnée |||·||| telle que |||A||| < 1 ;
(ii) la suite

(
Ak
)
k∈N converge vers 0 ;

(iii) ρ(A) < 1.
3. Montrer que dans ces conditions, la série

∑
Ak converge.

4. Montrer que pour toute norme subordonnée |||·|||,
∣∣∣∣∣∣Ak

∣∣∣∣∣∣1/k −−−−−→
k→+∞

ρ(A).

5. Montrer que la limite précédente reste vraie pour n’importe quelle norme sur Mn(C).

Exercice 7 (Caractère borné de la suite des puissances, [5]). Soit A ∈ Mn(C). Montrer que
(
Ak
)
k∈N est bornée

si et seulement si
[
ρ(A) ≤ 1 et pour toute valeur propre λ de A telle que |λ| = 1, le sous-espace propre associé à λ

est égal au sous-espace caractéristique associé à λ
]
.

Exercice 8 (Théorème du minimax, [6] ou [7]). Soit (E, 〈·, ·〉) un espace euclidien de dimension n ∈ N∗ et f ∈ L(E)
un endomorphisme autoadjoint. D’après le théorème spectral, f est diagonalisable en base orthonormée. On note
λ1 ≤ . . . ≤ λn ses valeurs propres rangées dans l’ordre croissant. Pour k ∈ J1, nK, on note Sk l’ensemble des
sous-espaces vectoriels de E de dimension k.

Montrer que pour tout k ∈ J1, nK,
λk = min

F∈Sk

max
x∈F
∥x∥=1

〈f(x), x〉 = max
F∈Sn−k+1

min
x∈F
∥x∥=1

〈f(x), x〉.

Exercice 9 (Deux applications de l’exercice précédent, [6] ou [7]). Soit E un espace euclidien de dimension n.
1. Soit f, g ∈ L(E) autoadjoints, de valeurs propres respectives ordonnées λ1 ≤ . . . ≤ λn et µ1 ≤ . . . ≤ µn. On

suppose que pour tout x ∈ E, 〈f(x), x〉 ≤ 〈g(x), x〉. Montrer que pour tout k ∈ J1, nK, λk ≤ µk.
2. (Entrelacement de Cauchy) Soit f ∈ L(E) autoadjoint, G un hyperplan de E, p la projection orthogonale de

sur G et g l’endomorphisme induit sur G par p ◦ f .
(a) Montrer que g est autoadjoint.

Il est donc diagonalisable. On note µ1 ≤ . . . ≤ µn−1 ses valeurs propres.
(b) Montrer que λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ . . . ≤ λn−1 ≤ µn−1 ≤ λn.

3.2 Éléments de correction
Solution 1. 1. On rencontre souvent la preuve dans le cas trigonalisable, où elle est un peu plus simple. Je vous

l’écris dans le cas général.
Écrivons

χM = (X − λ)
ma(λ) ×

k∏
j=1

P
αj

j

la décomposition de χM en produit d’irréductibles. D’après le théorème de Cayley-Hamilton et le lemme des
noyaux,

Kn = ker (χM (M)) = ker
(
(M − λIn)

ma(λ)
)
⊕

k⊕
j=1

ker (Pj(M)αj ) . (1)

De plus les sous-espaces apparaissant dans cette décomposition sont stables par M (ce sont des noyaux de
polynômes en M , donc de matrices qui commutent avec M). Notons g l’endomorphisme induit par M sur
ker
(
(M − λIn)

ma(λ)
)

et fj celui induit sur ker (Pj(M)αj ) pour j ∈ J1, kK. Dans une base B adaptée à la
décomposition (1), la matrice de M est diagonale par blocs, égale à

MB(M) = diag (MB̃(g),MB1(f1), . . . ,MBk
(fk)) ,
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d’où

χM = χg ×
k∏

j=1

χfj .

En outre, λ n’est valeur propre d’aucun des fj (sinon, un vecteur propre associé serait à la fois dans un
ker (Pj(M)αj ) et dans ker

(
(M − λIn)

ma(λ)
)

, ce qui est interdit par la somme directe (1)), donc λ n’est racine
d’aucun des χfj . La multiplicité ma(λ) de λ comme racine de χM est donc la multiplicité de λ comme racine
de χg.
Mais g est annulé par (X − λ)ma(λ). On en déduit que λ est sa seule valeur propre et que, étant annulé par
un polynôme scindé, g est trigonalisable, donc χg est scindé. Par conséquent, χg est une puissance de X − λ,
et le polynôme caractéristique ayant pour degré la dimension de l’espace, χg = (X − λ)dimker((M−λIn)

ma(λ)).
D’après le lien établi précédemment entre ma(λ) et la multiplicité de λ comme racine de χg, on conclut bien
que ma(λ) = dimker

(
(M − λIn)

ma(λ)
)

.

2. Puisque λ est valeur propre de M , ker (M − λIn) 6= {0}, donc mg(λ) ≥ 1. En outre, ker(M − λIn) ⊂
ker
(
(M − λIn)

ma(λ)
)
, donc mg(λ) ≤ dimker

(
(M − λIn)

ma(λ)
)

qui est ma(λ) d’après la question précédente
d’où

1 ≤ mg(λ) ≤ ma(λ).

De même, λ étant valeur propre de M , c’est une racine de µM , d’où mm(λ) ≥ 1. Par ailleurs, d’après le
théorème de Cayley-Hamilton, µM divise χM , donc mm(λ) ≤ ma(λ), d’où

1 ≤ mm(λ) ≤ ma(λ).

3. Pour M =

(
0 0
0 0

)
, on a mg(0) = 2 et mm(0) = 1 car µM = X, d’où mg(0) > mm(0). Pour M =

(
0 1
0 0

)
on

a mg(0) = 1 et mm(0) = 2 car µM = X2, d’où mg(0) < mm(0).
4. On reprend la décomposition (1) et les endomorphismes induits. On a cette fois µM = PPCM(µg, µf1 , . . . µfk),

donc mm(λ) est le maximum des multiplicités de λ comme racine de µg et des µfj . Comme précédemment,
λ n’est racine d’aucun µfj , donc mm(λ) est la multiplicité de λ comme racine de µg. En outre, µg divise
(X − λ)ma(λ) car ce polynôme annule g, donc µg est une puissance de X − λ, et finalement

µg = (X − λ)mm(λ).

On a donc mm(λ) = 1 si et seulement si g = λIdker((M−λIn)
ma(λ)). Cette condition est équivalente à dire

que ker
(
(M − λIn)

ma(λ)
)

, qui contient toujours ker (M − λIn), lui est en fait égal. En raison de l’inclusion
toujours vraie, l’égalité de ces espaces équivaut à l’égalité de leurs dimensions, c’est-à-dire à mg(λ) = ma(λ).

Solution 2. Si n = 1, alors Com(A) = (1) a 1 pour unique valeur propre. Dans la suite, on suppose n ≥ 2.
On note Com(A) la comatrice de A. On rappelle que son coefficient (i, j) est (−1)i+j∆i,j où ∆i,j est le déter-

minant de la matrice obtenue en supprimant la ligne i et la colonne j de A. On rappelle aussi que

ACom(A)T = Com(A)TA = det(A)In. (2)

• Le rang d’une matrice est la taille maximale de ses déterminants extraits non nuls. Ainsi, si rg(A) ≤ n − 2,
alors aucun déterminant extrait de A de taille n − 1 n’est non nul, d’où Com(A) = 0. Dans ce cas, 0 est la
seule valeur propre de Com(A).

• Si rg(A) = n, alors A est inversible et Com(A)T = det(A)A−1. Les valeurs propres de Com(A) sont donc
celles de det(A)A−1, c’est-à-dire les det(A)

λ pour λ valeur propre de A (et les multiplicités de det(A)
λ sont les

mêmes que celles de λ pour A).
• Il reste le cas où rg(A) = n − 1. Dans ce cas, A n’est pas inversible donc (2) conduit à ACom(A)T = 0, et

donc Im
(
Com(A)T

)
⊂ kerA, d’où

rg(Com(A)) = rg
(
Com(A)T

)
≤ dimker(A) = 1,

où la dernière égalité vient du théorème du rang. De plus, le résultat déjà rappelé sur le rang comme taille
maximale d’un déterminant extrait non nul montre qu’il existe un coefficient de Com(A) non nul, et donc
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rg(Com(A)) ≥ 1, d’où finalement rg(Com(A)) = 1. Par conséquent, 0 est valeur propre de Com(A) de
multiplicité géométrique n− 1, donc de multiplicité algébrique égale à n− 1 ou à n.
Il reste à trouver une éventuelle dernière valeur propre λ de Com(A). 4 Comme la trace d’une matrice est
la somme de ses valeurs propres répétées selon les multiplicités algébriques, λ = tr(Com(A)). Par continuité
de la trace et de M 7→ Com(M) 5, on a λ = lim

t→0
tr(Com(A + tIn)). Mais Com(A) n’ayant qu’un nombre fini

de valeurs propres, pour t > 0 assez petit, Com(A + tIn) est inversible, donc ses valeurs propres sont les
det(A+tIn)

λj+t =
∏n

k=1(λk+t)

λj+t =
∏

k ̸=j(λk + t) où les λj sont les valeurs propres de A, répétées avec multiplicités
algébriques, d’après le cas inversible traité précédemment. Ainsi,

tr(Com(A+ tIn)) =

n∑
j=1

∏
k ̸=j

(λk + t) −−−−→
t→0+

n∑
j=1

∏
k ̸=j

λk = λ.

On sait que 0 est valeur propre de A car A n’est pas inversible. Disons par exemple que λ1 = 0. Alors dans la
somme précédente, il ne reste que

λ =

n∏
k=2

λk.

Remarque : dans ce dernier cas, on peut dire quand Com(A) est diagonalisable. En effet, la multiplicité géomé-
trique de 0 pour Com(A) est n− 1. Si λ = 0, autrement dit si la multiplicité algébrique de 0 pour A est supérieure
ou égale à 2, alors A n’est pas diagonalisable (sans quoi elle serait nulle). Si en revanche λ 6= 0, alors ker(M −λIn)
est non nul et en somme directe avec kerM . Pour des raisons de dimension, on a alors E = kerM ⊕ ker(M − λIn)
donc M est diagonalisable.

Solution 3. 1. Soit A ∈ Mn(R) et x ∈ Rn \ {0}. On a(
‖Ax‖2
‖x‖2

)2

=
〈Ax,Ax〉
〈x, x〉

=

〈
ATAx, x

〉
〈x, x〉

.

La matrice ATA est symétrique réelle, donc diagonalisable en base orthonormée. Elle est en outre positive
car pour tout x ∈ Rn,

〈
x,ATAx

〉
= 〈Ax,Ax〉 ≥ 0. Notons 0 ≤ λ1 ≤ . . . ≤ λn = ρ

(
ATA

)
ses valeurs propres

(répétées avec multiplicités algébriques) et (e1, . . . , en) une base orthonormée de vecteurs propres associés à
ces valeurs propres. Décomposons x dans cette base en x =

∑n
i=1 xiei. On a alors

(
‖Ax‖2
‖x‖2

)2

=

〈∑n
i=1 λixiei,

∑n
j=1 xjej

〉
∑n

i=1 x
2
i

=

∑n
i=1 λix

2
i∑n

i=1 x
2
i

≤ λn

∑n
i=1 x

2
i∑n

i=1 x
2
i

= λn

= ρ
(
ATA

)
.

En passant à la borne supérieure, il vient |||A|||22 ≤ ρ
(
ATA

)
. En outre

(
∥Aen∥2

∥en∥2

)2
= λn = ρ

(
ATA

)
donc

|||A|||22 = supx ̸=0

(
∥Ax∥2

∥x∥2

)2
≥ ρ

(
ATA

)
, ce qui prouve

|||A|||22 = ρ
(
ATA

)
.

Il reste à prouver que ρ
(
ATA

)
= ρ

(
AAT

)
. Supposons d’abord que ρ

(
ATA

)
> 0. Soit u un vecteur propre de

ATA associé à une valeur propre λ de module maximal, qui est non nulle d’après l’hypothèse ρ
(
ATA

)
> 0.

4. Éventuelle car si la multiplicité algébrique de 0 est n, on les a déjà toutes, auquel cas λ = 0.
5. Qui découle de la continuité du déterminant.
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Alors AATAu = Aλu = λAu. En outre, puisque λ 6= 0 et ATAu = λu 6= 0, on a Au 6= 0. Par conséquent, Au
est un vecteur propre de AAT pour la valeur propre λ, ce qui prouve que

ρ
(
ATA

)
≤ ρ

(
AAT

)
. (3)

Dans le cas où ρ
(
ATA

)
= 0, on a aussi ρ

(
AAT

)
= 0. En effet, dans le cas contraire, on peut appliquer (3)

dans le cas strictement positif avec AT à la place de A, d’où 0 < ρ
(
AAT

)
≤ ρ

(
ATA

)
, ce qui est absurde.

L’inégalité (3) est donc vraie dans tous les cas. En l’appliquant avec AT au lieu de A, on obtient l’inégalité
inverse, donc l’égalité.

2. Si A ∈ Sn(R), alors A est diagonalisable en base orthonormée. Dans une telle base, la matrice de ATA = A2

est diag(µ2
1, . . . , µ

n
n) où les µi sont les valeurs propres de A. On a donc ρ

(
ATA

)
= ρ(A)2 et donc |||A|||2 = ρ(A).

Comme ρ coïncide avec |||·|||2 sur Sn(R), c’est une norme sur Sn(R).

Solution 4. 1. De Au = b et Aũ = b̃, on tire A (u− ũ) = b − b̃, c’est-à-dire u − ũ = A−1
(
b− b̃

)
. Utilisant la

propriété de sous-multiplicativité ‖Mx‖ ≤ |||M |||‖x‖ des normes subordonnées, il vient

‖u− ũ‖ ≤
∣∣∣∣∣∣A−1

∣∣∣∣∣∣ ∥∥∥b− b̃
∥∥∥ . (4)

Par ailleurs, de Au = b, on tire ‖b‖ = ‖Au‖ ≤ |||A|||‖u‖, c’est-à-dire

1

‖u‖
≤ |||A|||

‖b‖
. (5)

En multipliant (4) et (5), on obtient le résultat demandé.
2. De Au = b = Âû, on tire

A (u− û) = b−Aû

= Âû−Aû

=
(
Â−A

)
û,

d’où
u− û = A−1

(
Â−A

)
û.

Par conséquent, ‖u− û‖ ≤
∣∣∣∣∣∣A−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Â−A
∣∣∣∣∣∣∣∣∣ ‖û‖, d’où

‖u− û‖
‖û‖

≤
∣∣∣∣∣∣A−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣Â−A
∣∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣A−1

∣∣∣∣∣∣|||A|||

∣∣∣∣∣∣∣∣∣Â−A
∣∣∣∣∣∣∣∣∣

|||A|||
= cond(A)

∣∣∣∣∣∣∣∣∣Â−A
∣∣∣∣∣∣∣∣∣

|||A|||
.

3. On a
1 = |||In||| =

∣∣∣∣∣∣AA−1
∣∣∣∣∣∣ ≤ |||A|||

∣∣∣∣∣∣A−1
∣∣∣∣∣∣ = cond(A).

4. D’après la première égalité de l’exercice précédent, |||A||| = ρ
(
ATA

)
. De l’autre égalité de l’exercice précédent

appliquée à A−1, on tire
∣∣∣∣∣∣A−1

∣∣∣∣∣∣ = ρ
(
A−1

(
A−1

)T)
= ρ

((
ATA

)−1
)

. Les valeurs propres de
(
ATA

)−1 sont
les inverses de celles de ATA, qui sont positives. Par conséquent,

ρ
((

ATA
)−1
)
=

1

λ1 (ATA)

où λ1 désigne la plus petite valeur propre. D’où

cond(A) =
ρ
(
ATA

)
λ1 (ATA)

.

5. Si A est orthogonale, alors ATA = In, donc la seule valeur propre de ATA est 1, donc la question précédente
montre que cond(A) = 1

1 = 1.
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Solution 5. 1. Soit ‖ · ‖ telle que |||·||| est subordonnée à ‖ · ‖. Soit A ∈ Mn(C). Soit u un vecteur propre associé
à une valeur propre λ de A de module ρ(A). On a |||A||| ≥ ∥Au∥

∥u∥ = |λ| = ρ(A).
2. Soit A ∈ Mn(C) et u un vecteur propre de A associée à une valeur propre λ de A de module ρ(A). Comme

u 6= 0, il existe v ∈ Rn tel que uvT 6= 0 (vT étant une matrice ligne, uvT est une matrice de taille n). On a
alors λuvT = AuvT . En prenant la norme, il vient

ρ(A)
∥∥uvT∥∥ =

∥∥AuvT
∥∥ ≤ ‖A‖

∥∥uvT∥∥ .
Comme uvT 6= 0, en divisant par

∥∥uvT∥∥, on obtient le résultat.
3. L’hypothèse signifie que −1 est valeur propre de M , en particulier ρ(M) ≥ 1, donc ‖M‖ ≥ ρ(M) ≥ 1.
4. Soit t ∈ C différent de tous les λi. On a

P−1(A+ ε− tIn)P = D + P−1εP − tIn

= D − tIn + P−1εP

= (D − tIn)
(
In + (D − tIn)

−1P−1εP
)

où on a pu inverser D − tIn parce que t n’est pas valeur propre de D.
5. Sous l’hypothèse supplémentaire, le membre gauche de l’égalité précédente n’est pas inversible, donc le membre

de droite non plus. Comme D − tIn reste inversible, c’est que In + (D − tIn)
−1P−1εP n’est pas inversible.

D’après la question 3, on a donc

1 ≤
∥∥(D − tIn)

−1P−1εP
∥∥ ≤

∥∥(D − tIn)
−1
∥∥ ∥∥P−1

∥∥ ‖ε‖ ‖P‖

où la deuxième inégalité provient de la sous-multiplicativité de la norme. D’après l’hypothèse sur la norme
des matrices diagonales, on a

∥∥(D − tIn)
−1
∥∥ = max

1≤i≤n

1

|λi − t|
. En particulier, il existe j ∈ J1, nK tel que∥∥(D − tIn)

−1
∥∥ = 1

|λj−t| , d’où
|λj − t| ≤

∥∥P−1
∥∥ ‖ε‖ ‖P‖ = cond(P )‖ε‖,

autrement dit
t ∈ Dj .

En conclusion, les valeurs propres de A+ ε sont soit dans l’union des Di, soit égales à l’un des λi auquel cas
elles sont encore dans l’union des Di.

Solution 6. 1. Soit ‖ · ‖ une norme sur Cn et |||·||| la norme subordonnée associée. Soit u ∈ Rn \ {0} un vecteur
propre de A associé à une valeur propre λ de module maximal. Alors

‖Au‖
‖u‖

=
|λ|‖u‖
‖u‖

= ρ(A),

donc
|||A||| = sup

x ̸=0

‖Ax‖
‖x‖

≥ ‖Au‖
‖u‖

= ρ(A).

Par conséquent, pour toute norme subordonnée |||·|||, |||A||| ≥ ρ(A), d’où

ρ(A) ≤ inf {|||A||| ; |||·||| est une norme subordonnée} .

Pour montrer l’autre inégalité, nous allons construire une suite de normes subordonnées (Nk)k∈N (qui va
dépendre de A !) telle que Nk(A) −−−−−→

k→+∞
ρ(A). Ce n’est pas facile mais c’est un résultat à avoir vu au moins

une fois.
Partons de la norme ‖ · ‖∞ sur Rn et calculons sa norme subordonnée |||·|||∞. On a, pour M ∈ Mn(C) et
x ∈ Cn,

‖Mx‖∞ = max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

Mi,jxj

∣∣∣∣∣∣
≤ ‖x‖∞ max

1≤i≤n

n∑
j=1

|Mi,j | ,
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donc |||M |||∞ ≤
∑n

j=1 |Mi,j |. Choisissant i0 tel que
∑n

j=1 |Mi0,j | = max
1≤i≤n

n∑
j=1

|Mi,j |. On écrit Mi0,j = |Mi0,j | eiθj

(où l’écriture i désigne le nombre complexe usuel, pour ne pas le confondre avec l’indice, écrit i) pour j ∈ J1, nK.
On pose u =

(
e−iθ1 , . . . , e−iθn

)
. De cette façon, ‖u‖∞ = 1 et

‖Mu‖∞ = max
1≤i≤n

∣∣∣∣∣∣
n∑

j=1

Mi,je
−iθj

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
n∑

j=1

Mi0,je
−iθj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

j=1

|Mi0,j | eiθje−iθj

∣∣∣∣∣∣
=

n∑
j=1

|Mi0,j |

= max
1≤i≤n

n∑
j=1

|Mi,j | .

Ainsi, |||M |||∞ ≥ ∥Mu∥∞
∥u∥∞

= max
1≤i≤n

n∑
j=1

|Mi,j |. Par double inégalité, il y a égalité.

Fixons une matrice P ∈ GLn(C) et posons ‖x‖∞,P = ‖Px‖∞ pour x ∈ Cn. Il est facile de voir que c’est une
norme sur Cn. De plus, en notant |||·|||∞,P sa norme subordonnée, sur Mn(C), on a

|||M |||∞,P = sup
x ̸=0

‖Mx‖∞,P

‖x‖∞,P
= sup

x ̸=0

‖PMx‖∞
‖Px‖∞

= sup
y ̸=0

‖PMP−1y‖∞
‖y‖∞

=
∣∣∣∣∣∣PMP−1

∣∣∣∣∣∣
∞,

où la troisième égalité vient du fait que {Px ; x ∈ Cn \ {0}} = Cn \ {0}.
Trigonalisons maintenant la matrice A. Soit k ∈ N∗. Notons (e1, . . . , en) une base de trigonalisation et T =
(Ti,j) la matrice triangulaire supérieur de A dans cette base. Dans la base Bk =

(
e1,

1
ke2,

1
k2 e3, . . . ,

1
kn−1 en

)
la matrice de A est Tk :=

(
Ti,j

kj−i

)
1≤i,j≤n

. Comme Tk −−−−−→
k→+∞

diag (T1,1, . . . , Tn,n), on a |||Tk|||∞ −−−−−→
k→+∞

|||diag (T1,1, . . . , Tn,n)|||∞ = max
1≤i≤n

|Ti,i| = ρ(A), la dernière égalité venant du fait que les coefficients diagonaux

de T sont les valeurs propres de A. Mais par formule de changement de base, il existe une matrice Pk ∈ GLn(C)
telle que PkAP

−1
k = Tk. On a alors |||Tk|||∞ = |||A|||∞,Pk

. Ainsi, |||A|||∞,Pk
−−−−−→
k→+∞

ρ(A). Par conséquent,

ρ(A) ≥ inf {|||A||| ; |||·||| est une norme subordonnée} .

Par double inégalité, on a l’égalité demandée.
2. Facile avec la première question.
3. Il suffit de prendre une norme subordonnée telle que |||A||| < 1 et d’observer que la série en question converge

absolument, donc converge (la convergence absolue entraînant la convergence car Mn(C) est complet car de
dimension finie).

4. Soit k ∈ N∗. D’après l’inégalité toujours vraie entre norme subordonnée et rayon spectral, on a
∣∣∣∣∣∣Ak

∣∣∣∣∣∣1/k ≥
ρ
(
Ak
)1/k. En trigonalisant, on voit bien que ρ

(
Ak
)
= ρ(A)k, donc pour tout k ∈ N∗,

∣∣∣∣∣∣Ak
∣∣∣∣∣∣1/k ≥ ρ(A).

Soit ε > 0. Alors ρ
(

A
ρ(A)+ε

)
= ρ(A)

ρ(A)+ε < 1, donc Ak

(ρ(A)+ε)k
−−−−−→
k→+∞

0 d’après ce qui précède. Par conséquent,∣∣∣∣∣∣∣∣∣ Ak

(ρ(A)+ε)k

∣∣∣∣∣∣∣∣∣ ≤ 1 à partir d’un certain rang, d’où
∣∣∣∣∣∣Ak

∣∣∣∣∣∣1/k ≤ ρ(A)+ ε à partir d’un certain rang. Ainsi, pour

tout ε > 0, il existe un rang K tel que pour tout k ≥ K, ρ(A) ≤
∣∣∣∣∣∣Ak

∣∣∣∣∣∣1/k ≤ ρ(A) + ε. Par définition, on a
prouvé la limite demandée.

11



5. Soit N une norme quelconque et |||·||| une norme subordonnée. Par équivalence des normes en dimension finie,
il existe deux constantes α, β > 0 telles que α|||·||| ≤ N ≤ β|||·|||. Par conséquent, pour tout k ∈ N∗,

α1/k
∣∣∣∣∣∣Ak

∣∣∣∣∣∣1/k ≤ N
(
Ak
)1/k ≤ β1/k

∣∣∣∣∣∣Ak
∣∣∣∣∣∣1/k.

Comme
(
α1/k, β1/k

)
−−−−−→
k→+∞

(1, 1), le résultats acquis pour les normes subordonnées montre que les deux

termes encadrant N
(
Ak
)1/k convergent vers ρ(A). On conclut avec le théorème des gendarmes.

Solution 7. Voir [5].

Solution 8. Démontrons par exemple la première égalité (la deuxième fait appel à un raisonnement proche). Notons
(e1, . . . , en) une base orthonormée de vecteurs propres de f associés aux valeurs propres λ1, . . . , λn. Soit k ∈ J1, nK
et F un sous-espace de E de dimension k. On observe que F ∩Vect(ek, . . . , en) 6= {0}. En effet, si c’était le cas, ces
deux espaces seraient en somme directe, et on aurait dim(F ⊕ Vect(ek, . . . , en)) = dimF + dimVect(ek, . . . , en) =
k + n − k + 1 = n + 1 > dimE, ce qui est impossible. Soit x ∈ F ∩ Vect(ek, . . . , en) \ {0}, qu’on peut, quitte à le
diviser par sa norme, supposer de norme 1. On décompose x sous la forme x =

∑n
j=k xjej . On a alors

〈f(x), x〉 =

〈
n∑

j=k

λjxjej ,

n∑
i=1

xjej

〉
=

n∑
j=1

λjx
2
j ≥ λk

n∑
j=k

x2
j = λk.

Par conséquent, max
x∈F
∥x∥=1

〈f(x), x〉 ≥ λk (où le minimum existe bien par un argument de continuité-compacité). Ceci

étant vrai pour tout F ∈ Sk, on a
inf

F∈Sk

max
x∈F
∥x∥=1

〈f(x), x〉 ≥ λk.

Mais pour F = Vect(e1, . . . , ek), on a, en décomposant x ∈ F tel que ‖x‖ = 1 en x = x1e1 + . . .+ xkek,

〈f(x), x〉 =
k∑

j=1

λjx
2
j ≤ λk

k∑
j=1

x2
j = λk,

donc max
x∈F
∥x∥=1

〈f(x), x〉 ≤ λk, et comme 〈f(ek), ek〉 = λk, on a même max
x∈F
∥x∥=1

〈f(x), x〉 = λk. Par conséquent,

inf
F∈Sk

max
x∈F
∥x∥=1

〈f(x), x〉 ≤ λk.

Par double inégalité, on a donc
inf

F∈Sk

max
x∈F
∥x∥=1

〈f(x), x〉 = λk.

et comme la borne inférieure est atteinte pour F = Vect(e1, . . . , ek), c’est bien un minimum.

Solution 9. 1. Soit k ∈ J1, nK. D’après l’hypothèse, on a

min
F∈Sk

max
x∈F
∥x∥=1

〈f(x), x〉 ≤ min
F∈Sk

max
x∈F
∥x∥=1

〈g(x), x〉,

c’est-à-dire, d’après le théorème du minimax,
λk ≤ µk.

2. (a) Soit x, y ∈ G. Comme f et p sont autoadjoints (p l’est car c’est un projecteur orthogonal) et p laisse G
invariant, on a

〈g(x), y〉 = 〈p ◦ f(x), y〉 = 〈f(x), p(y)〉 = 〈f(x), y〉 = 〈x, f(y)〉 = 〈p(x), f(y)〉 = 〈x, p ◦ f(y)〉 = 〈x, g(y)〉

donc g est autoadjoint.
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(b) On applique le théorème du minimax à f et à g : en notant SEk l’ensemble des sous-espaces de E de
dimension k et SGk l’ensemble des sous-espaces de G de dimension k, on a

∀k ∈ J1, nK, λk = min
F∈SE

k

max
x∈F
∥x∥=1

〈f(x), x〉 = max
F∈SE

n−k+1

min
x∈F
∥x∥=1

〈f(x), x〉

et
∀k ∈ J1, n− 1K, µk = min

F∈SG
k

max
x∈F
∥x∥=1

〈g(x), x〉 = max
F∈SG

n−k

min
x∈F
∥x∥=1

〈g(x), x〉.

Soit k ∈ J1, n− 1K. Si F ∈ SGk et x ∈ F , on a 〈g(x), x〉 = 〈p ◦ f(x), x〉 = 〈f(x), p(x)〉 = 〈f(x), x〉, donc

µk = min
F∈SG

k

max
x∈F
∥x∥=1

〈g(x), x〉 = min
F∈SG

k

max
x∈F
∥x∥=1

〈f(x), x〉,

Comme SGk ⊂ SEk , on a
min
F∈SE

k

max
x∈F
∥x∥=1

〈f(x), x〉 ≤ min
F∈SG

k

max
x∈F
∥x∥=1

〈f(x), x〉,

c’est-à-dire
λk ≤ µk.

Le même type de raisonnement en utilisant l’autre égalité du théorème du minimax conduit à

µk ≤ λk+1.
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