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Leçon 208 : Espaces vectoriels normés, applications linéaires continues.
Exemples.

1 Le commentaire du rapport du jury
Cette leçon est particulièrement vaste, et il convient de faire des choix. Il est inutile de commencer

systématiquement le plan de cette leçon par de longs rappels sur les normes : comme toutes les autres,
cette leçon ne doit pas tomber dans le formalisme, mais bien proposer des résultats significatifs
illustrés par des exemples bien choisis, en particulier de normes équivalentes ou non, ou de calculs
de normes subordonnées. En ce qui concerne le contenu, le programme offre de nombreuses possibilités
qui permettent aussi de faire un développement conséquent d’un résultat central ou d’un enchaînement
de résultats centraux de cette leçon : cas de la dimension finie, intervention de la complétude (en
particulier le cas hilbertien), étude de la compacité de la boule unité fermée, lien entre continuité d’une
forme linéaire (ou plus généralement, d’une application linéaire de rang fini) et fermeture du noyau...

Pour les candidates et candidats solides, des prolongements possibles sont : les conséquences du
théorème de Baire dans le cadre des espaces de Banach (tout particulièrement le théorème de Banach-
Steinhaus et son utilisation pour construire des objets pathologiques), le théorème de Hahn-Banach et
ses conséquences, la théorie des algèbres de Banach, la détermination de duals topologiques.

2 Exemple de bibliographie
• Xavier Gourdon, Les maths en tête - Analyse,
• Bertrand Hauchecorne, Les contre-exemples en mathématiques,
• Daniel Li, Cours d’analyse fonctionnelle,
• Jean-Etienne Rombaldi, Mathématiques pour l’agrégation - Analyse et probabilités.

3 Les résultats indispensables
— Critère de continuité des applications linéaires (et bilinéaires).
— Cas de la dimension finie : équivalence des normes, critères de compacité, compacité des boules, continuité

des applications linéaires.
— Théorème de Riesz (la boule unité fermée est compacte si et seulement si l’espace est de dimension finie).

4 Pour aller plus loin
Les normes subordonnées de matrices peuvent vous amener à parler d’analyse numérique via le conditionnement

de matrices. On pourra consulter Algèbre linéaire numérique de Allaire et Kaber, pages 88 et suivantes.
La complétude est une notion fondamentale en analyse, où les espaces de Banach sont omniprésents. Le théorème

de point fixe de Banach-Picard (celui sur les applications contractantes) a de nombreuses conséquences, comme le
théorème de Cauchy-Lipschitz ou le théorème d’inversion locale (qui sortent du cadre de cette leçon, ne les mettez
pas forcément dans vos plans, c’était juste pour illustrer l’importance de la complétude).

Les espaces de Hilbert sont un cas particulier d’espaces de Banach très importants à mentionner (sans pour
autant recycler l’entièreté de la leçon 213).
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Le rapport de jury invite les candidates et candidats « solides » à s’intéresser au théorème de Baire et à ses
nombreuses conséquences. Cela signifie que ce n’est pas un thème obligatoire, et que vous pouvez obtenir une très
bonne note sans le mentionner. Si vous êtes à l’aise avec le théorème de Baire, il permet de présenter de très
jolis résultats. Une référence parmi d’autres sur ces sujets est l’annexe du Gourdon d’analyse dédiée au théorème
de Baire. Parmi les conséquences du théorème de Baire pertinentes pour cette leçon, on trouve :

— Le théorème de Banach-Steinhaus et ses conséquences (par exemple l’existence de fonctions continues qui
ne sont pas égales à leurs séries de Fourier, ou bien la continuité de la limite simple d’applications linéaires
continues définies sur un Banach).

— Le théorème de l’application ouverte et de l’isomorphisme de Banach. C’est difficile. Il a néanmoins une
conséquence facile et particulièrement intéressante pour cette leçon : soit E est un espace vectoriel et N1, N2

deux normes faisant de E un espace de Banach ; si N1 est plus fine que N2, alors N1 et N2 sont équivalentes.

5 Les exemples et contre-exemples
Comme dans toutes les leçons 1, et d’autant plus lorsque le titre le mentionne, il faut mettre plein d’exemples.

S’ils sont absents, le jury risque de vous interroger dessus. Voici quelques suggestions, développées dans les exercices.
— Ne pas se contenter d’exemples de normes sur des espaces de dimension finie. Les espaces de fonctions, par

exemple les espaces Lp, offrent de jolis exemples d’espaces normés.

— Des normes N1, N2 équivalentes où on peut calculer explicitement inf
x ̸=0

N1(x)

N2(x)
et inf

x ̸=0

N2(x)

N1(x)
.

— Un exemple de normes non équivalentes mais où l’une est plus fine que l’autre et un exemple de deux normes
où aucune des deux n’est plus fine que l’autre.

— Une application linéaire continue pour un bon choix de normes mais discontinue pour un autre choix de
normes.

— Des calculs explicites de normes subordonnées. Les normes matricielles subordonnées aux normes ‖ · ‖1, ‖ · ‖∞
et ‖ · ‖2 de Rn ont des expressions simples, voir par exemple Algèbre linéaire numérique de Allaire et Kaber,
pages 54-55.

— Pour illustrer le théorème de Riesz, un exemple de suite dans une boule de dimension infinie n’ayant aucune
sous-suite convergente.

— Un exemple d’espace normé qui n’est pas de Banach.

6 Exercices
6.1 Énoncés
Exemples et contre-exemples

Exercice 1 (comparaison de normes). 1. Sur Rn, comparer les normes ‖ · ‖1, ‖ · ‖2 et ‖ · ‖∞ en donnant les
constantes optimales.

2. Pour f ∈ C([0, 1],R), on pose ‖f‖1 =
∫ 1

0
|f(x)|dx et ‖f‖∞ = sup

x∈X
|f(x)|. Cela définit deux normes sur

C([0, 1],R). Montrer que ‖ · ‖∞ est plus fine que ‖ · ‖1 mais que ‖ · ‖1 n’est pas plus fine que ‖ · ‖∞.
3. Pour P =

∑d
k=1 akX

k ∈ R[X], on pose ‖P‖h =
∑d

k=0
|ak|
k+1 et ‖P‖∞ = max

k∈J0,dK |ak|. Cela définit deux normes

sur R[X]. Montrer qu’aucune de ces deux normes n’est plus fine que l’autre.

Exercice 2 (applications linéaires continues pour certaines normes mais pas pour d’autres). On pose D : R[X] −→ R[X]
P 7−→ P ′

et M : R[X] −→ R[X]
P 7−→ XP

.

1. Montrer qu’il existe une norme sur R[X] qui rend D continue.
2. Même question avec M .

1. Consultez le livre de Hauchecorne pour toutes vos leçons !
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3. Existe-t-il une norme qui rende continues à la fois D et M ?

Exercice 3 (un espace normé non complet). On munit R[X] de la norme ‖ · ‖∞ où
∥∥∑ akX

k
∥∥
∞ = max

k
|ak|.

Montrer que la suite (Pn)n∈N =
(∑n

k=0
1
2k
Xk

)
n∈N est de Cauchy mais ne converge pas. En extrayant une sous-suite

de (Pn)n∈N, trouver une série qui converge absolument dans (R[X], ‖ · ‖∞) mais qui ne converge pas.
Remarques :

— Un espace normé est un Banach si et seulement si toute série absolument convergente converge.
— Le théorème de Baire permet de montrer qu’un espace normé possédant une base dénombrable (comme R[X]

avec la base des Xn) ne peut jamais être complet.

Formes linéaires et noyaux

Exercice 4. Soit (E, ‖ · ‖) un espace vectoriel normé. Montrer que le noyau d’une forme linéaire non nulle est soit
fermé soit dense dans E, et qu’il est fermé si et seulement si la forme linéaire est continue.

Exercice 5. Soit (E, ‖ · ‖) un espace vectoriel normé et φ une forme linéaire continue sur E, non nulle. On définit

|||f ||| = sup
x∈E\{0}

|f(x)|
‖x‖

. Soit a ∈ E \ kerφ. Montrer que |||f ||| = |f(a)|
d(a,kerφ) .

Dimension finie/infinie

Exercice 6. Soit (Pn)n∈N une suite de polynômes réels de degré au plus 2025. On suppose que pour tout n ∈ N,∫ 1

0

|P (t)|dt ≤ π. Montrer qu’il existe une sous-suite de Pn qui converge uniformément sur [19, 97].

Exercice 7 (réciproque de l’équivalence des normes en dimension finie). Soit (E, ‖ · ‖) un espace vectoriel normé.
Montrer l’équivalence entre :

1. E est de dimension finie ;
2. toutes les normes sur E sont équivalentes ;
3. toutes les formes linéaires sur (E, ‖ · ‖) sont continues.

Indications : pour 2. ⇒ 3., après avoir fixé une forme linéaire f on pourra considérer l’application x ∈ E 7→
‖x‖ + |f(x)| ; pour 3. ⇒ 1., on admettra que tout espace vectoriel de dimension infinie possède une base (infinie)
sur laquelle on s’appuiera pour construire une forme linéaire non continue.

Exercice 8 (une illustration du théorème de Riesz). On munit l’espace ℓ∞(N) des suites réelles bornées de la
norme ‖ · ‖∞ définie par ‖u‖∞ = sup

n∈N
|un| pour tout u ∈ ℓ∞(N). Donner un exemple de suite de la sphère unité de

(ℓ∞(N), ‖ · ‖∞) n’ayant aucune sous-suite convergente.

Théorème de Baire Les exercices suivants utilisent le théorème de Baire.

Exercice 9 (les espaces normés de dimension dénombrable ne sont jamais des Banach). Montrer qu’un espace
vectoriel normé possédant une base dénombrable n’est jamais un espace de Banach.

Exercice 10 (Résultat avec une jolie preuve qui utilise plein de théorèmes de la leçon. Difficile, utilise le théorème
de l’application ouverte.). Soit E = C([0, 1],R), muni de ‖ · ‖∞ définie par ‖f‖∞ = sup

x∈[0,1]

|f(x)|. Montrer que tout

sous-espace fermé de (E, ‖ · ‖∞) inclus dans C1([0, 1],R) est de dimension finie.

6.2 Éléments de correction
Solution 1. 1. On a, pour tout x ∈ Rn,

‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞, ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2 et ‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞.

En effet, pour x = (x1, . . . , xn) ∈ Rn,
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• ‖x‖∞ = max
1≤k≤n

|xk| ≤
n∑

k=1

|xk|︸ ︷︷ ︸
=∥x∥1

≤
n∑

k=1

‖x‖∞ = n‖x‖∞. Il y a égalité dans la première inégalité pour

x = (1, 0, . . . , 0) et dans la deuxième pour x = (1, 1, . . . , 1), d’où l’optimalité des constantes.
• ‖x‖1 =

∑n
k=1 |xk| = 〈(|x1|, . . . , |xn|) , (1, . . . , 1)〉 ≤ ‖x‖2‖(1, . . . , 1)‖2 =

√
n‖x‖2 (Cauchy-Schwarz)

avec égalité pour x = (1, . . . , 1) et ‖x‖22 =
∑n

k=1 |xk|2 ≤ (
∑n

k=1 |xk|)
2
= ‖x‖21 (car en développant

(
∑n

k=1 |xk|)
2, on retrouve les |xk|2 de ‖x‖22 et d’autres termes positifs) avec égalité pour x = (1, 0 . . . , 0).

• ‖x‖∞ = max
1≤k≤n

|xk| ≤

√√√√ n∑
k=1

|xk|2 = ‖x‖2 avec égalité pour x = (1, 0 . . . , 0) et ‖x‖2 =
√∑n

k=1 |xk|2 ≤√∑n
k=1 ‖x‖2∞ =

√
n‖x‖∞ avec égalité pour x = (1, 1, . . . , 1).

2. Pour tout f ∈ C([0, 1],R), ‖f‖1 ≤ ‖f‖∞ donc ‖ · ‖∞ est plus fine que ‖ · ‖1. En prenant la suite de fonctions
(fn)n≥1 où fn : x 7→ n(1 − nx)1[0, 1

n ]
(faire un dessin : elle relie de manière affine les points (0, n) et

(
1
n , 0

)
puis est nulle sur

[
1
n , 1

]
), on a, pour tout n ≥ 1, ∥fn∥∞

∥fn∥1
= n

1
2

= 2n −−−−−→
n→+∞

+∞, donc ‖ · ‖1 n’est pas plus fine
que ‖ · ‖∞.

3. On a ∥∥∑n
k=0 X

k
∥∥
h

‖
∑n

k=0 X
k‖∞

=

∑n+1
j=1 j

1
−−−−−→
n→+∞

+∞,

(divergence de la série harmonique) donc ‖ · ‖∞ n’est pas plus fine que ‖ · ‖1, et

‖Xn‖∞
‖Xn‖h

=
1
1

n+1

= n+ 1 −−−−−→
n→+∞

+∞

donc ‖ · ‖1 n’est pas plus fine que ‖ · ‖∞.

Solution 2. 1. On pose
∥∥∥∑d

k=0 akX
k
∥∥∥ =

∑d
k=0 k!ak. Cela définit une norme sur R[X] et pour P =

∑d
k=0 akX

k,
on a

‖P ′‖ =

∥∥∥∥∥
d∑

k=0

kakX
k−1

∥∥∥∥∥ =

∥∥∥∥∥∥
d−1∑
j=0

(j + 1)aj+1X
j

∥∥∥∥∥∥ =

d−1∑
j=0

(j+1)j!|aj+1| =
d−1∑
j=0

(j+1)!|aj+1| =
d∑

k=1

k!|ak| ≤
d∑

k=0

k!|ak| = ‖P‖ ,

c’est-à-dire
‖D(P )‖ ≤ ‖P‖,

d’où la continuité de D pour cette norme.

2. Avec
∥∥∥∑d

k=0 akX
k
∥∥∥
∞

= max
0≤k≤d

|ak|, on a ‖M(P )‖∞ = ‖P‖∞ pour tout P ∈ R[X], d’où la continuité.

3. Supposons par l’absurde qu’il en existe une, qu’on note ‖ · ‖. Alors l’application linéaire M ◦D est continue.
Mais

‖M ◦D(Xn)‖
‖Xn‖

=
‖nXn‖
‖Xn‖

= n −−−−−→
n→+∞

+∞,

ce qui est absurde.

Solution 3. Si n < m, on a ‖Pm − Pn‖∞ =
∥∥∑m

k=n+1
1
2k
Xk

∥∥
∞ = 1

2n+1 . Soit ε > 0 et N tel que 1
2N

≤ ε (c’est-à-dire
N ≥ log2

(
1
ε

)
). Alors pour tous n,m ≥ N , on a ‖Pm − Pn‖∞ = 1

2max(m,n)+1 ≤ 1
2N+1 ≤ ε, donc la suite est de Cauchy.

La convergence pour ‖ · ‖∞ entraîne la convergence de chacun des coefficients. Ainsi, si (Pn)n∈N a une limite
P =

∑
akX

k, on doit avoir ak = 1
2k

pour tout k ∈ N. C’est impossible car P ne peut avoir qu’un nombre fini de
coefficients non nuls.

Solution 4. Soit φ une forme linéaire non nulle sur E et H = kerφ. L’adhérence H de H est un sous-espace
vectoriel de E. Si H n’est pas fermé, alors H est un sous-espace vectoriel de E contenant strictement un hyperplan,
c’est donc E tout entier, autrement dit H est dense dans E.

On donne une autre preuve qui va montrer que le cas où kerφ est fermé se produit uniquement lorsque φ est
continue. Si φ est continue, alors kerφ = φ−1({0}) est fermé en tant qu’image réciproque d’un fermé par une
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application continue. Supposons au contraire que φ n’est pas continue. Alors par caractérisation de la continuité des
applications linéaires, il existe une suite (xn)n∈N de E \{0} telle que |φ(xn)|

∥xn∥ −−−−−→
n→+∞

+∞. Soit y ∈ E et, pour n ∈ N,

yn = y− φ(y)
φ(xn)

xn. On a φ(yn) = φ(y)− φ(y)
φ(xn)

φ(xn) = 0, donc yn ∈ kerφ. De plus, ‖y−yn‖ = |φ(y)| ∥xn∥
|φ(xn)| −−−−−→n→+∞

0,
donc yn −−−−−→

n→+∞
y. Ainsi, tout élément de E est limite d’une suite de kerφ, donc kerφ est dense dans E.

Solution 5. Soit x ∈ E \ {0}. Puisque a n’appartient pas à l’hyperplan kerφ, il existe un unique couple (λx, yx) ∈
R × kerφ tel que x = yx + λxa. On a alors φ(x) = λxφ(a), c’est-à-dire λx = φ(x)

φ(a) , de sorte que x = yx + φ(x)
φ(a)a.

Si φ(x) 6= 0, en posant zx = −φ(a)
φ(x)yx, qui appartient toujours à kerφ, cette égalité s’écrit x = φ(x)

φ(a) (a − zx). Par
conséquent,

|φ(x)|
‖x‖

=
|φ(a)|

‖a− zx‖
.

Par ailleurs, quand x parcourt E \ kerφ, zx parcourt kerφ. En effet, si z ∈ kerφ, alors en posant x = 1
φ(a) (a− z),

on a z = zx. En effet, φ(x) = φ(a)−φ(z)
φ(a) = 1, d’où x = φ(x)

φ(a) (a− z), c’est-à-dire z = a− φ(a)
φ(x)x = zx.

Par conséquent,

sup
x ̸=0

|φ(x)|
‖x‖

= sup
φ(x) ̸=0

|φ(x)|
‖x‖

= sup
z∈kerφ

|φ(a)|
‖a− z‖

=
|φ(a)|

inf
z∈kerφ

‖a− z‖
=

|φ(a)|
d(a, kerφ)

.

Solution 6. On vérifie facilement qu’en posant ‖P‖1 =
∫ 1

0
|P (t)|dt et ‖P‖∞,[19,97] = sup

x∈[19,97]

|P (x)|, on définit deux

normes sur R2025[X]. Comme cet espace est de dimension finie (égale à 2026), ces deux normes sont équivalentes.
Ainsi, l’hypothèse qui indique que la suite est bornée pour ‖ · ‖1 entraîne qu’elle l’est aussi pour ‖ · ‖∞,[19,97].
En outre, puisque la dimension de l’espace est finie, toute suite bornée possède une sous-suite convergente. Par
conséquent, (Pn)n∈N possède une sous-suite convergente pour ‖·‖∞,[19,97], autrement dit une sous-suite qui converge
uniformément sur [19, 97].

Solution 7. • 1. ⇒ 2. : Cours.
• 2. ⇒ 3. : Soit f une forme linéaire sur E. On pose, pour x ∈ E, N(x) = ‖x‖+ |f(x)|. On vérifie que N est une

norme sur E. Elle est donc équivalente à ‖ · ‖ d’après 2. Il existe donc une constante α > 0 telle que pour tout
x ∈ E, N(x) ≤ ‖x‖, c’est-à-dire |f(x)| ≤ (α − 1)‖x‖, d’où la continuité de f (d’après le critère de continuité
des applications linéaires).

• 3. ⇒ 1. : On raisonne par contraposée. On suppose donc que E est de dimension infinie et on montre qu’il
existe une forme linéaire non continue sur (E, ‖ · ‖). D’après l’indication, il existe une base B = (ei)i∈I de E,
infinie puisque E est de dimension infinie. L’ensemble I étant infini, il existe une suite injective (in)n∈N de
I. On définit une forme linéaire f sur la base B en posant f(ein) = n‖ein‖ pour tout n ∈ N et f(ei) = 0 si
i ∈ I \ {in | n ∈ N}. Alors |f(ein )|

∥ein∥ = n −−−−−→
n→+∞

+∞ donc f n’est pas continue (d’après le critère de continuité
des applications linéaires).

Solution 8. Pour k ∈ N, on pose u(k) = (0, . . . , 0, 1, 0, 0, . . .) où le 1 est en position k. On a bien
∥∥u(k)

∥∥ = 1
pour tout k ∈ N. Soit φ une extraction. La convergence pour ‖ · ‖∞ entraîne la convergence terme à terme, donc
si

(
u(φ(k))

)
k∈N converge pour ‖ · ‖∞ vers une suite u, alors pour tout n ∈ N, u

(φ(k))
n −−−−−→

k→+∞
un. Or, puisque

φ(k) −−−−−→
k→+∞

+∞, on a u
(φ(k))
n −−−−−→

k→+∞
0 pour tout n ∈ N. Par conséquent, u est la suite nulle. C’est absurde car la

sphère unité étant fermée, on doit avoir ‖u‖∞ = 1.

Solution 9. Soit B = (en)n∈N une base de E. On pose, pour n ∈ N, En = Vect(e0, . . . , en). Alors les En sont
des fermés de E (ce sont des sous-espaces de dimension finie) d’intérieur vide (ce sont des sous-espaces stricts).
Par conséquent, si E était complet, alors d’après le théorème de Baire 2, leur union serait d’intérieur vide. Mais⋃

n∈N En = E. C’est absurde.

Solution 10. C’est un festival de name dropping. L’idée est d’appliquer le théorème de Riesz, c’est-à-dire de
montrer que la boule unité fermée de V est compacte pour conclure que V est de dimension finie. Pour prouver la

2. Il est souvent énoncé en : dans un espace métrique complet, l’intersection d’ouverts denses est dense. En passant au complémentaire,
c’est équivalent à : dans un espace métrique complet, la réunion de fermés d’intérieurs vides est d’intérieur vide.
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compacité d’un ensemble de fonctions, on pense au théorème d’Ascoli. Pour l’appliquer, on a besoin de prouver
que la boule unité fermée de V, qu’on note Bf (0, 1)(V,∥·∥∞), est équicontinue. On va même prouver qu’elle est
équilipschitzienne à l’aide d’un petit tour de magie utilisant le théorème d’isomorphisme de Banach.

Rappelons les énoncés des trois gros théorèmes utilisés.

Théorème (Isomorphisme de Banach). Soit (E, ‖ · ‖E) et (F, ‖ · ‖F ) deux espaces de Banach. Soit T : (E, ‖ · ‖E) →
(F, ‖ · ‖F ) une bijection linéaire continue. Alors T est un homéomorphisme.

Théorème (Ascoli). Soit (X, d) un espace métrique compact. On munit l’espace C(X,R) des fonctions continues
X → R de la norme ‖ · ‖∞ définie par ‖f‖∞ = sup

x∈X
|f(x)|. Une partie A ⊂ C(X,R) est relativement compacte 3 dans

C(X,R) si et seulement si elle est bornée et équicontinue 4.

Théorème (Riesz). Soit (E, ‖ · ‖) un espace vectoriel normé. La boule unité fermée Bf (0, 1) est compacte si et
seulement si E est de dimension finie.

• Étape 1 : Bf (0, 1)(V,∥·∥∞) est équilipschitzienne. On pose, pour f ∈ V , ‖f‖C1 = ‖f‖∞ + ‖f ′‖∞. Cela
définit une norme sur V . On rappelle que (C([0, 1],R), ‖ · ‖∞) est complet. Comme V est fermé dans
(C([0, 1],R), ‖ · ‖∞), l’espace (V, ‖ · ‖∞) est un espace de Banach. On admet temporairement que (V, ‖ · ‖C1)
en est un aussi. Comme ‖ · ‖∞ ≤ ‖ · ‖C1 sur V , par caractérisation de la continuité des applications li-
néaires, l’application id∥·∥C1→∥·∥∞ : (V, ‖ · ‖C1) −→ (C([0, 1],R), ‖ · ‖∞)

f 7−→ f
est continue. C’est évidem-

ment une bijection, donc le théorème d’isomorphisme de Banach indique que sa bijection réciproque, c’est-à-
dire id∥·∥∞→∥·∥C1

: (C([0, 1],R), ‖ · ‖∞) −→ (V, ‖ · ‖C1)
f 7−→ f

, est continue. Il existe donc une constante c > 1

telle que pour tout f ∈ V , ‖f‖C1 ≤ c‖f‖∞. Autrement dit, pour tout f ∈ V , ‖f ′‖∞ ≤ (c−1)‖f‖∞. Par consé-
quent, pour tout f ∈ Bf (0, 1)(V,∥·∥∞), ‖f ′‖∞ ≤ c−1, ce qui entraîne que Bf (0, 1)(V,∥·∥∞) est équilipschitzienne
(la constante de Lipschitz c− 1 étant indépendante de f ∈ V ).

• Étape 2 : utilisation du théorème d’Ascoli pour montrer que la boule Bf (0, 1)(V,∥·∥∞) est compacte. L’espace
([0, 1], | · |) est compact, la boule Bf (0, 1)(V,∥·∥∞) est bornée et on vient de montrer qu’elle est équilipschit-
zienne, donc équicontinue. Par conséquent, le théorème d’Ascoli indique qu’elle est d’adhérence compacte dans
C([0, 1],R). Comme elle est fermée dans C([0, 1],R) (c’est la boule fermée de (V, ‖·‖∞), qui est lui-même fermé
dans C([0, 1],R)), elle est compacte.

• Étape 3 : conclusion à l’aide du théorème de Riesz. La boule Bf (0, 1)(V,∥·∥∞) étant compacte, le théorème de
Riesz indique que V est de dimension finie.

• Étape 4 : preuve de la complétude de (V, ‖ · ‖C1) que l’on avait temporairement admise. Soit (fn)n∈N une
suite de Cauchy de (V, ‖ · ‖C1). Étant donné la définition de ‖ · ‖C1 , les suites (fn)n∈N et (f ′

n)n∈N sont de
Cauchy dans (C([0, 1],R), ‖ · ‖∞). Comme cet espace est complet, ces suites convergent uniformément. D’après
le cours sur les suites de fonctions, cela entraîne que la limite uniforme f de (fn)n∈N est de classe C1 et que
sa dérivée f ′ est la limite uniforme de (f ′

n)n∈N. En particulier, f étant limite uniforme d’une suite de V , qui
est fermé dans C([0, 1],R), on a f ∈ V , et ‖fn − f‖C1 = ‖fn − f‖∞ + ‖f ′

n − f ′‖∞ −−−−−→
n→+∞

0. Ainsi, f est limite
de (fn)n∈N dans (V, ‖ · ‖C1). On a montré que toute suite de Cauchy de (V, ‖ · ‖C1) converge dans cet espace,
d’où la complétude.

3. C’est-à-dire d’adhérence compacte.
4. Autrement dit : ∀x ∈ X, ∀ε > 0, ∃η > 0, ∀f ∈ A, ∀y ∈ X, d(x, y) ≤ η ⇒ |f(x) − f(y)| ≤ ε. L’espace étant compact, c’est

équivalent à demander l’équicontinuité uniforme, c’est-à-dire ∀ε > 0, ∃η > 0, ∀f ∈ A, ∀x, y ∈ X, d(x, y) ≤ η ⇒ |f(x) − f(y)| ≤ ε.
Une condition suffisante pour que A soit équicontinue est qu’elle soit équilipschitzienne, autrement dit qu’il existe une constante k telle
que tout élément de A soit k-lipschitzien.
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