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Lecon 208 : Espaces vectoriels normés, applications linéaires continues.
Exemples.

1 Le commentaire du rapport du jury

Cette lecon est particulierement vaste, et il convient de faire des choix. Il est inutile de commencer
systématiquement le plan de cette lecon par de longs rappels sur les normes : comme toutes les autres,
cette lecon ne doit pas tomber dans le formalisme, mais bien proposer des résultats significatifs
illustrés par des exemples bien choisis, en particulier de normes équivalentes ou non, ou de calculs
de normes subordonnées. En ce qui concerne le contenu, le programme offre de nombreuses possibilités
qui permettent aussi de faire un développement conséquent d’un résultat central ou d’un enchainement
de résultats centraux de cette lecon : cas de la dimension finie, intervention de la complétude (en
particulier le cas hilbertien), étude de la compacité de la boule unité fermée, lien entre continuité d’une
forme linéaire (ou plus généralement, d’une application linéaire de rang fini) et fermeture du noyau...

Pour les candidates et candidats solides, des prolongements possibles sont : les conséquences du
théoréme de Baire dans le cadre des espaces de Banach (tout particulierement le théoréme de Banach-
Steinhaus et son utilisation pour construire des objets pathologiques), le théoréme de Hahn-Banach et
ses conséquences, la théorie des algebres de Banach, la détermination de duals topologiques.

2 Exemple de bibliographie

e Xavier Gourdon, Les maths en téte - Analyse,
e Bertrand Hauchecorne, Les contre-exemples en mathématiques,
e Daniel Li, Cours d’analyse fonctionnelle,

e Jean-Etienne Rombaldi, Mathématiques pour l’agrégation - Analyse et probabilités.

3 Les résultats indispensables

— Critére de continuité des applications linéaires (et bilinéaires).

— Cas de la dimension finie : équivalence des normes, critéres de compacité, compacité des boules, continuité
des applications linéaires.

— Théoreme de Riesz (la boule unité fermée est compacte si et seulement si ’espace est de dimension finie).

4 Pour aller plus loin

Les normes subordonnées de matrices peuvent vous amener a parler d’analyse numérique via le conditionnement
de matrices. On pourra consulter Algebre linéaire numérique de Allaire et Kaber, pages 88 et suivantes.

La complétude est une notion fondamentale en analyse, ou les espaces de Banach sont omniprésents. Le théoréme
de point fixe de Banach-Picard (celui sur les applications contractantes) a de nombreuses conséquences, comme le
théoréme de Cauchy-Lipschitz ou le théoréme d’inversion locale (qui sortent du cadre de cette legon, ne les mettez
pas forcément dans vos plans, c’était juste pour illustrer 'importance de la complétude).

Les espaces de Hilbert sont un cas particulier d’espaces de Banach trés importants & mentionner (sans pour
autant recycler lentiereté de la legon 213).



Le rapport de jury invite les candidates et candidats « solides » a s’intéresser au théoreme de Baire et a ses
nombreuses conséquences. Cela signifie que ce n’est pas un théme obligatoire, et que vous pouvez obtenir une tres
bonne note sans le mentionner. Si vous étes a ’aise avec le théoréme de Baire, il permet de présenter de tres
jolis résultats. Une référence parmi d’autres sur ces sujets est 'annexe du Gourdon d’analyse dédiée au théoréme
de Baire. Parmi les conséquences du théoreme de Baire pertinentes pour cette legon, on trouve :

— Le théoréme de Banach-Steinhaus et ses conséquences (par exemple l'existence de fonctions continues qui
ne sont pas égales a leurs séries de Fourier, ou bien la continuité de la limite simple d’applications linéaires
continues définies sur un Banach).

— Le théoréeme de l'application ouverte et de l'isomorphisme de Banach. C’est difficile. Il a néanmoins une
conséquence facile et particulierement intéressante pour cette lecon : soit E est un espace vectoriel et N1, Ny
deux normes faisant de E un espace de Banach ; si V7 est plus fine que N», alors N7 et N5 sont équivalentes.

5 Les exemples et contre-exemples

Comme dans toutes les lecons®, et d’autant plus lorsque le titre le mentionne, il faut mettre plein d’exemples.
S’ils sont absents, le jury risque de vous interroger dessus. Voici quelques suggestions, développées dans les exercices.

— Ne pas se contenter d’exemples de normes sur des espaces de dimension finie. Les espaces de fonctions, par
exemple les espaces LP, offrent de jolis exemples d’espaces normés.

. Ni(z .. No(z
— Des normes Ny, Ny équivalentes ot on peut calculer explicitement inf 1(2) et inf 2(2)

z#0 No (x) z#0 N (x)
— Un exemple de normes non équivalentes mais ou 'une est plus fine que I’autre et un exemple de deux normes

ou aucune des deux n’est plus fine que l'autre.

— Une application linéaire continue pour un bon choix de normes mais discontinue pour un autre choix de

normes.

— Des calculs explicites de normes subordonnées. Les normes matricielles subordonnées aux normes | - ||1, || - ||
et || ||z de R™ ont des expressions simples, voir par exemple Algébre linéaire numérique de Allaire et Kaber,
pages 54-55.

— Pour illustrer le théoréme de Riesz, un exemple de suite dans une boule de dimension infinie n’ayant aucune
sous-suite convergente.

— Un exemple d’espace normé qui n’est pas de Banach.

6 Exercices

6.1 Enoncés

Exemples et contre-exemples

Exercice 1 (comparaison de normes). 1. Sur R”, comparer les normes || - |1, || - ||z et || - ||cc en donnant les
constantes optimales.
2. Pour f € C(]0,1],R), on pose ||f|i = fol |f(z)|dz et ||fllc = sup |f(z)|. Cela définit deux normes sur
C([0,1], R). Montrer que || - ||oc est plus fine que || - ||; mais que || - T\f}r(l’est pas plus fine que || - [|co-
3. Pour P = ZZ:I apX* € R[X], on pose ||P|| = 22:0 lar] o I1P|loo = kgﬁ%?éﬂ |ag|. Cela définit deux normes

k+1

sur R[X]. Montrer qu’aucune de ces deux normes n’est plus fine que lautre.
Exercice 2 (applications linéaires continues pour certaines normes mais pas pour d’autres). Onpose D : R[X]

et M: R[X] — R[X].
P —s XP

1. Montrer qu’il existe une norme sur R[X] qui rend D continue.

2. Méme question avec M.

1. Consultez le livre de Hauchecorne pour toutes vos legons!

—
P

R[X]
P/



3. Existe-t-il une norme qui rende continues a la fois D et M ?

Exercice 3 (un espace normé non complet). On munit R[X] de la norme || - [ ot || akaHOO = mkax\ak\.
Montrer que la suite (P,),, oy = (ZZ:O Q%X k )neN est de Cauchy mais ne converge pas. En extrayant une sous-suite
de (Py),cn, trouver une série qui converge absolument dans (R[X7, || - ||oc) mais qui ne converge pas.

Remarques :

— Un espace normé est un Banach si et seulement si toute série absolument convergente converge.

— Le théoréme de Baire permet de montrer qu’un espace normé possédant une base dénombrable (comme R[X]
avec la base des X™) ne peut jamais étre complet.

Formes linéaires et noyaux

Exercice 4. Soit (E, || -||) un espace vectoriel normé. Montrer que le noyau d’une forme linéaire non nulle est soit
fermé soit dense dans F, et qu’il est fermé si et seulement si la forme linéaire est continue.

Exercice 5. Soit (E, || - ||) un espace vectoriel normé et ¢ une forme linéaire continue sur F, non nulle. On définit
f@)] o . £ (a)
lIfll = sup =——. Soit a € E\ ker ¢. Montrer que ||f|| = 752"
zebN{0} ||l daker o)

Dimension finie/infinie
Exercice 6. Soit (P,), .y une suite de polynomes réels de degré au plus 2025. On suppose que pour tout n € N,

1
/ |P(t)|dt < w. Montrer qu’il existe une sous-suite de P,, qui converge uniformément sur [19, 97].
0

Exercice 7 (réciproque de I’équivalence des normes en dimension finie). Soit (E, || - ||) un espace vectoriel normé.
Montrer ’équivalence entre :

1. E est de dimension finie ;
2. toutes les normes sur E sont équivalentes ;
3. toutes les formes linéaires sur (E, || - ||) sont continues.

Indications : pour 2. = 3., aprés avoir fixé une forme linéaire f on pourra considérer l'application x € E —
llz|| + |f(x)]; pour 3. = 1., on admettra que tout espace vectoriel de dimension infinie posséde une base (infinie)
sur laquelle on s’appuiera pour construire une forme linéaire non continue.

Exercice 8 (une illustration du théoréme de Riesz). On munit Pespace ¢>°(N) des suites réelles bornées de la

norme || - ||oo définie par ||ul|e = sup |u,| pour tout u € £°°(N). Donner un exemple de suite de la sphere unité de
neN
(£ (N), || - [loo) n’ayant aucune sous-suite convergente.

Théoréme de Baire Les exercices suivants utilisent le théoréme de Baire.

Exercice 9 (les espaces normés de dimension dénombrable ne sont jamais des Banach). Montrer qu’un espace
vectoriel normé possédant une base dénombrable n’est jamais un espace de Banach.

Exercice 10 (Résultat avec une jolie preuve qui utilise plein de théorémes de la lecon. Difficile, utilise le théoréme

de lapplication ouverte.). Soit E = C([0,1],R), muni de || - || définie par ||f|lcc = sup |f(x)|. Montrer que tout
z€[0,1]

sous-espace fermé de (E, || - || ) inclus dans C1([0, 1], R) est de dimension finie.

6.2 Eléments de correction

Solution 1. 1. On a, pour tout z € R,

[2lloe < llzlls < nlllloo,  llllz < llzll < Vallzlla et ]l

IN

]2 < Vnllzllo-

En effet, pour z = (z1,...,2,) € R,



n n

o ||z|leo = 1rgnlicmécn|wk| < ; lzg| < ; lz]lcc = n||z]leo- Il y a égalité dans la premiere inégalité pour
- -
=zl
x = (1,0,...,0) et dans la deuxi¢me pour x = (1,1,...,1), d’ott Poptimalité des constantes.
ozl = Xiilzel = ((aal-- s lal) . (1,0 1) < flzl2ll(L, ... D2 = Vnlela (Cauchy-Schwarz)
avec égalité pour z = (1,...,1) et ||z]|3 = Do lzul> < Oioylzkl)” = ||z]|3 (car en développant
>ry \:ck|)2, on retrouve les |z |? de ||z]|3 et d’autres termes positifs) avec égalité pour z = (1,0...,0).

n

> lwkl? = |2 avec égalité pour & = (1,0...,0) et [|z]l2 = />p_; [kl? <
k=1
Ve 1zl|2 = Vnllz||e avec égalité pour z = (1,1,...,1).
2. Pour tout f € C([0,1],R), |Ifll1 < [|fllcc donc || - ||o est plus fine que || - |l1. En prenant la suite de fonctions
(fn)n>1 00 fr sz — n(l — nm)]l[o 1] (faire un dessin : elle relie de maniére affine les points (0,n) et (1,0)

o flalloe = max [z <

puis est nulle sur [%, 1]), on a, pour tout n > 1, ”Hf;HHT =10 =9n —Jr—» +00, donc || - |1 n’est pas plus fine
" 2 n—+oo
que | - [|oo-
3. Ona o
n n .
1250 X, _ 2o J oo
2 k=0 Xl 1 modeo T
(divergence de la série harmonique) donc || - ||« n’est pas plus fine que || - |1, et
Xm 1
SN S
X, L —
donc || - ||1 n’est pas plus fine que || - ||co-

Solution 2. 1. On pose szzo akaH = ZZ:O klay. Cela définit une norme sur R[X] et pour P = 22:0 ar X",

on a
d d—1 d—1 d—1 d d
1P =D kanX 7 = DG+ Daga X7|| = > G+Dslaa] = Y G+ ajea| = > klarl <> klax| = || P,
k=0 =0 =0 j=0 k=1 k=0
c’est-a-dire
D(P)| < [IP]],

d’out la continuité de D pour cette norme.

2. Avec szzo akX"?HOO = O@3§d|ak|, on a ||[M(P)|lcc = ||P|lcc pour tout P € R[X], d’ot la continuité.

3. Supposons par 'absurde qu’il en existe une, qu’on note || - ||. Alors I'application linéaire M o D est continue.

Mais
[MoD(X™)|| _ [[nX"| _

Xel X e

+00,

ce qui est absurde.

Solution 3. Sin <m,ona [Py — Pl = ||> i, Q%XkHoo = 5. Soit € > 0 et N tel que 5% < & (c’est-a-dire

N > log, (%)) Alors pour tous n,m > N, on a || Py, — P, = Z,I,a,((im)ﬂ < 2N1+1 < g, donc la suite est de Cauchy.
La convergence pour || - || entraine la convergence de chacun des coefficients. Ainsi, si (P,),cy & une limite

P =Y a; X", on doit avoir a = 2% pour tout k € N. C’est impossible car P ne peut avoir qu'un nombre fini de
coefficients non nuls.

Solution 4. Soit ¢ une forme linéaire non nulle sur E et H = ker ¢. L’adhérence H de H est un sous-espace
vectoriel de E. Si H n’est pas fermé, alors H est un sous-espace vectoriel de F contenant strictement un hyperplan,
c’est donc F tout entier, autrement dit H est dense dans E.

On donne une autre preuve qui va montrer que le cas ou ker ¢ est fermé se produit uniquement lorsque ¢ est
continue. Si ¢ est continue, alors kerp = ¢~1({0}) est fermé en tant qu’image réciproque d’un fermé par une



application continue. Supposons au contraire que ¢ n’est pas continue. Alors par caractérisation de la continuité des
applications linéaires, il existe une suite (z,,)nen de E\ {0} telle que lelw)l 5 4 o0 Soit y € Eet,pourn € N,

Han n—+oo
yn = Y= Z5wn. Ona p(yn) = ¢(y) — £ () = 0, done y, € ker . De plus, [ly —yal = lo(y)| Ly —— 0,
donc y, ~—+—% y. Ainsi, tout élément de E est limite d’une suite de ker ¢, donc ker ¢ est dense dans FE.
n—-+0o0

Solution 5. Soit z € E '\ {0}. Puisque a n’appartient pas a I’hyperplan ker ¢, il existe un unique couple (A, y,) €

R x ker ¢ tel que z = y, + A\za. On a alors p(z) = A\zp(a), cest-a-dire A, = %7 de sorte que = = y, + igi;a.
Si p(x) # 0, en posant z, = —:22‘;; Ye, qui appartient toujours & ker ¢, cette égalité s’écrit z = :‘;EZ; (a — 2z). Par
conséquent,
lp(x)| _ le(a)]
el fla = z|

Par ailleurs, quand « parcourt E \ ker ¢, z, parcourt ker ¢. En effet, si z € ker ¢, alors en posant = = w(la) (a— 2),

ol = igzg (a — z), c’est-a-dire z = a — igzgm = 2.

on a z = z,. En effet, p(x) = % =1,d

Par conséquent,

@) _ o le@l o le@] | le@] _lela)

z#0 ||l‘|| o()#0 ||1‘H zEker ¢ la— ZH B Zeil?efup”a_ ZH B d(a'vker@)'

Solution 6. On vérifie facilement qu’en posant ||P||; = fol |P(t)|dt et || Plloc,10,0m = sup [P(x)|, on définit deux
©€[19,97]

normes sur Rogas[X]. Comme cet espace est de dimension finie (égale a 2026), ces deux normes sont équivalentes.

Ainsi, I'hypotheése qui indique que la suite est bornée pour || - ||; entraine qu’elle 'est aussi pour || - ||o,[19,97]-

En outre, puisque la dimension de ’espace est finie, toute suite bornée posséde une sous-suite convergente. Par

conséquent, (P, ), oy Possede une sous-suite convergente pour |- ||, [19,97], autrement dit une sous-suite qui converge

uniformément sur [19,97].

Solution 7. e 1. = 2. : Cours.

e 2. = 3. : Soit f une forme linéaire sur E. On pose, pour « € E, N(z) = ||z||+]|f(z)|. On vérifie que N est une
norme sur F. Elle est donc équivalente & || - || d’aprés 2. Il existe donc une constante o > 0 telle que pour tout
x € E, N(z) < ||z|, c’est-a-dire |f(z)| < (o — 1)||z||, d’out la continuité de f (d’aprés le critére de continuité
des applications linéaires).

e 3.=1.: On raisonne par contraposée. On suppose donc que F est de dimension infinie et on montre qu’il
existe une forme linéaire non continue sur (E, || -||). D’apres I'indication, il existe une base B = (e;);cs de E,
infinie puisque £ est de dimension infinie. L’ensemble I étant infini, il existe une suite injective (i), oy de
I. On définit une forme linéaire f sur la base B en posant f(e;,) = nlle;, || pour tout n € N et f(e;) = 0 si

1€ I\ {in | n € N}. Alors |J|c|(:_""H)‘ =n— +oo donc f n’est pas continue (d’apres le critére de continuité
in n—-+0oo

des applications linéaires).

Solution 8. Pour k € N, on pose u*) = (0,...,0,1,0,0,...) ot le 1 est en position k. On a bien Hu(k)H =1
pour tout k € N. Soit ¢ une extraction. La convergence pour || - || entraine la convergence terme & terme, donc

*) Uy. Or, puisque

si (u(ﬁ"(k)))keN converge pour || - || vers une suite u, alors pour tout n € N, uﬁf P
oo

w(k) ;——% +00, on a qu(’“” —— 0 pour tout n € N. Par conséquent, u est la suite nulle. C’est absurde car la
— 400

k——+oo
spheére unité étant fermée, on doit avoir ||ul/e = 1.

Solution 9. Soit B = (ey), oy une base de E. On pose, pour n € N, E,, = Vect(e,...,e,). Alors les FE, sont
des fermés de E (ce sont des sous-espaces de dimension finie) d’intérieur vide (ce sont des sous-espaces stricts).
Par conséquent, si E était complet, alors d’aprés le théoréme de Baire?, leur union serait d’intérieur vide. Mais
U, en Bn = E. Cest absurde.

neN —n

Solution 10. C’est un festival de name dropping. L’idée est d’appliquer le théoréeme de Riesz, c’est-a-dire de
montrer que la boule unité fermée de V est compacte pour conclure que V est de dimension finie. Pour prouver la

2. Il est souvent énoncé en : dans un espace métrique complet, 'intersection d’ouverts denses est dense. En passant au complémentaire,
c’est équivalent & : dans un espace métrique complet, la réunion de fermés d’intérieurs vides est d’intérieur vide.



compacité d’un ensemble de fonctions, on pense au théoréeme d’Ascoli. Pour 'appliquer, on a besoin de prouver

que la boule unité fermée de V, qu’on note By(0,1)v,.|..), est équicontinue. On va méme prouver qu’elle est

équilipschitzienne a I’aide d’un petit tour de magie utilisant le théoréme d’isomorphisme de Banach.
Rappelons les énoncés des trois gros théoremes utilisés.

Théoréme (Isomorphisme de Banach). Soit (E, || ||g) et (F,||-||r) deux espaces de Banach. Soit T : (E, || - ||g) —
(F,] - ||r) une bijection linéaire continue. Alors T' est un homéomorphisme.

Théoréme (Ascoli). Soit (X,d) un espace métrique compact. On munit 'espace C(X,R) des fonctions continues
X — R de la norme || - ||oo définie par ||f]|cc = sup |f(z)|. Une partie A C C(X,R) est relativement compacte® dans
zeX

C(X,R) si et seulement si elle est bornée et équicontinue ™.

Théoréme (Riesz). Soit (E,| - ||) un espace vectoriel normé. La boule unité fermée Bf(0,1) est compacte si et
seulement si E est de dimension finie.

e Etape 1: B¢(0,1)(v,|-|..) est équilipschitzienne. On pose, pour f € V, [fler = [flloc + [If']loc- Cela

définit une norme sur V. On rappelle que (C([0,1],R),]| - |lcc) est complet. Comme V est fermé dans
(C([0,1],R), ] - lloo), Lespace (V, || - ||oo) est un espace de Banach. On admet temporairement que (V, || - ||lct)
en est un aussi. Comme || - [ < || - |lcr sur V, par caractérisation de la continuité des applications li-
néaires, I'application idl\-llg%l\vl\m (Vo ller) — (C([0,1],R), || - |lo) est continue. C’est évidem-
f — f
ment une bijection, donc le théoreme d’isomorphisme de Banach indique que sa bijection réciproque, c’est-a-
dire idj oo ¢ CO1LR), [+ lo) —> (Vi -[lex) , est continue. Il existe donc une constante ¢ > 1
f — f

telle que pour tout f € V, || fllcr < ¢||flloo- Autrement dit, pour tout f € V, || f'|lcc < (¢—1)||f]lco- Par consé-
quent, pour tout f € By(0,1)v,.||), [f'llcc < c—1, ce quientraine que Bf(0,1)y,|.|..) est équilipschitzienne
(la constante de Lipschitz ¢ — 1 étant indépendante de f € V).

e Etape 2 : utilisation du théoréme d’Ascoli pour montrer que la boule B 7(0,1)(v||-||..) est compacte. L’espace

([0,1],] - |) est compact, la boule By(0,1)(y,.|.) est bornée et on vient de montrer qu'elle est équilipschit-
zienne, donc équicontinue. Par conséquent, le théoréeme d’Ascoli indique qu’elle est d’adhérence compacte dans
C([0,1],R). Comme elle est fermée dans C([0, 1], R) (c’est la boule fermée de (V, ||+ ||oo), qui est lui-méme fermé
dans C([0, 1], R)), elle est compacte.

e Etape 3 : conclusion a laide du théoréme de Riesz. La boule B#(0,1)(v,||.|.) étant compacte, le théoreme de
Riesz indique que V est de dimension finie.

e Etape 4 : preuve de la complétude de (V]I - ller) que I'on avait temporairement admise. Soit (fy),cy une

suite de Cauchy de (V,| - ||c1). Etant donné la définition de || - ||c1, les suites (fn),cn €t (fi),cn sont de
Cauchy dans (C([0,1],R), || - ||sc). Comme cet espace est complet, ces suites convergent uniformément. D’apres
le cours sur les suites de fonctions, cela entraine que la limite uniforme f de (f,),cy est de classe Cl et que
sa dérivée f’ est la limite uniforme de (f},), cy. En particulier, f étant limite uniforme d’une suite de V', qui
est fermé dans C([0,1],R), ona f € V,et || fn — fllct = 1fn — flloo + 15— F'lloo PR 0. Ainsi, f est limite

de (fn), ey dans (V, | - |lc1). On a montré que toute suite de Cauchy de (V|| - [|c1) converge dans cet espace,
d’ou la complétude.

3. C’est-a-dire d’adhérence compacte.

4. Autrement dit : Ve € X, Ve >0, In >0, Vfe A Vye X, dz,y) <n=|f(z)— f(y)] < e. Lespace étant compact, c’est
équivalent & demander I’équicontinuité uniforme, c’est-a-dire Ve > 0, In >0, Vf € A, Vz,y € X, d(z,y) <n=|f(z) — fly)| <e.
Une condition suffisante pour que A soit équicontinue est qu’elle soit équilipschitzienne, autrement dit qu’il existe une constante k telle
que tout élément de A soit k-lipschitzien.
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