Exercice 1. —

Soit $f:[0,+\infty[\to\mathbb{R}$ une fonction de classe \mathscr{C}^1 et $\ell\in\mathbb{R}$.

On suppose que $f(x) + f'(x) \xrightarrow[x \to +\infty]{} \ell$. Montrer que $f(x) \xrightarrow[x \to +\infty]{} \ell$

Correction de l'exercice 1. Pour montrer que $f(x) \xrightarrow[x \to +\infty]{} \ell$, posons g = f + f' et observons que f est solution du problème de Cauchy $\begin{cases} y' + y = g \\ y(0) = f(0) \end{cases}$.

Résolvons ce problème de Cauchy. Les solutions de l'équation homogène sont les $x \mapsto \lambda e^{-x}$ pour $\lambda \in \mathbb{R}$. Cherchons une solution particulière de y'+y=g sous la forme $h: x \mapsto \lambda(x)e^{-x}$ avec λ une fonction dérivable. La fonction h est solution si et seulement si pour tout $x \geq 0$, $\lambda'(x)e^{-x} - \lambda(x)e^{-x} + \lambda(x)e^{-x} = g(x)$, c'est-à-dire $\lambda'(x) = e^x g(x)$.

D'après le théorème fondamental de l'analyse, $h: x \mapsto e^{-x} \int_0^x e^t g(t) dt$ est une solution particulière de l'équation, dont l'ensemble des solutions est donc

$$\left\{ \begin{array}{ccc} [0,+\infty[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & \lambda e^{-x} + e^{-x} \int_0^x e^t g(t) \ \mathrm{d}t & | \ \lambda \in \mathbb{R} \end{array} \right\}.$$

La seule de ces fonctions qui vaut f(0) en 0 est obtenue pour $\lambda = f(0)$. Ainsi,

$$\forall x \in [0, +\infty[, f(x) = f(0)e^{-x} + e^{-x} \int_0^x e^t g(t) dt.$$

Rappelons que g = f + f' converge vers ℓ en $+\infty$. Soit $\varepsilon > 0$. Il existe donc $a \ge 0$ tel que pour tout $t \ge a$, $\ell - \varepsilon \le g(t) \le \ell + \varepsilon$. Par conséquent, en écrivant f sous la forme précédente et en coupant l'intégrale en deux au niveau de a, on obtient que pour tout $x \ge a$,

$$f(0)e^{-x} + e^{-x} \int_0^a e^t g(t) \, dt + (\ell - \varepsilon)e^{-x} \int_a^x e^t \, dt \le f(x) \le f(0)e^{-x} + e^{-x} \int_0^a e^t g(t) \, dt + (\ell + \varepsilon)e^{-x} \int_a^x e^t \, dt,$$

c'est-à-dire, en calculant les intégrales entre a et x,

$$f(0)e^{-x} + e^{-x} \int_0^a e^t g(t) \, dt + (\ell - \varepsilon)(1 - e^{a-x}) \, dt \le f(x) \le f(0)e^{-x} + e^{-x} \int_0^a e^t g(t) \, dt + (\ell + \varepsilon)(1 - e^{a-x}).$$

Le membre de gauche converge vers $\ell - \varepsilon$ lorsque x tend vers $+\infty$, et celui de droite vers $\ell + \varepsilon$. Par conséquent, il existe A > 0 tel que pour tout $x \ge A$,

$$\ell - 2\varepsilon \leqslant f(x) \leqslant \ell + 2\varepsilon.$$

On a ainsi montré en revenant à la définition par les ε que $f(x) \xrightarrow[x \to +\infty]{} \ell$.