Forme limite du tas de sable abélien avec fuite

Théo Ballu, travail commun avec Cédric Boutillier, Sevak Mkrtchyan et Kilian Raschel

LAREMA, Université d'Angers

Séminaire 2PMA, janvier 2025

Sommaire

Tas de sable abélien

Le modèle classique $\label{eq:probleme} \mbox{Problème de la forme limite sur } \mathbb{Z}^2$

Le modèle *leaky* sur \mathbb{Z}^d

Modèle *leaky* Problème de la forme limite L'intervention salvatrice des probabilités Convergence du paramètre de fuite

Extension au cas de $\mathbb{Z}^d \times \{1, \ldots, p\}$

Tas de sable abélien

Le modèle classique

Problème de la forme limite sur \mathbb{Z}^2

Le modèle *leaky* sur \mathbb{Z}^d

Modèle *leaky* Problème de la forme limite L'intervention salvatrice des probabilités Convergence du paramètre de fuite

Extension au cas de $\mathbb{Z}^d imes \{1, \dots, p\}$

Le modèle de tas de sable est un automate cellulaire issu de la physique statistique.

- 1989 : notion de self-organized criticality dans [BakTangWies]¹
- ▶ 1990 : exemple du modèle de tas de sable dans [Dhar]²

^{1.} Per Bak, Chao Tang et Kurt Wiesenfeld. "Self-organized criticality : An explanation of the 1/f noise". In : Phys. Rev. Lett. ().

^{2.} Deepak Dhar. "Self-organized critical state of sandpile automaton models". In : Phys. Rev. Lett. ().

G = (V, E) est un graphe.

G = (V, E) est un graphe.

Sur chaque sommet, on met des grains de sable.

G = (V, E) est un graphe.

- Sur chaque sommet, on met des grains de sable.
- Si un sommet a plus de grains de sable que de voisins, il s'effondre : distribue un grain de sable à chaque voisin.

G = (V, E) est un graphe.

- Sur chaque sommet, on met des grains de sable.
- Si un sommet a plus de grains de sable que de voisins, il s'effondre : distribue un grain de sable à chaque voisin.
- On fait s'effondrer les sommets jusqu'à ce que ce ne soit plus possible.

Figure – Deux possibilités d'effondrement.

Figure – Aboutissent à la même configuration stable.

Remarques

- Quand plusieurs effondrements sont possibles, l'ordre ne change pas la configuration finale (d'où le qualificatif *abélien*).
- Le processus est entièrement **déterministe**.

Tas de sable abélien

Le modèle classique Problème de la forme limite sur \mathbb{Z}^2

Le modèle *leaky* sur \mathbb{Z}^d

Modèle *leaky* Problème de la forme limite L'intervention salvatrice des probabilités Convergence du paramètre de fuite

Extension au cas de $\mathbb{Z}^d \times \{1, \ldots, p\}$

On prend $G = \mathbb{Z}^2$. On place N grains de sable en (0,0) et on laisse s'effondrer jusqu'à stabilisation.

On prend $G = \mathbb{Z}^2$. On place N grains de sable en (0, 0) et on laisse s'effondrer jusqu'à stabilisation.

On renormalise par \sqrt{N} . Obtient-on une forme limite pour le **bord** du tas de sable quand $N \rightarrow +\infty$? Que dire de cette forme?

Figure – Simulation avec $N = 30\ 000$ grains de sable. Chaque couleur indique un nombre de grains de sable (0, 1, 2 ou 3).

Ce qui est connu :

- Le tas de sable est entre deux cercles de rayons $c_1\sqrt{N}$ et $c_2\sqrt{N}$.
- Il y a une forme limite après normalisation par \sqrt{N} .

Ce qui est connu :

- Le tas de sable est entre deux cercles de rayons $c_1\sqrt{N}$ et $c_2\sqrt{N}$.
- Il y a une forme limite après normalisation par \sqrt{N} .

Ce qui est conjecturé :

- La forme est convexe.
- Ce n'est pas un disque.
- Il y a des zones plates.

Figure – Zone plate conjecturée.

Problème difficile avec de nombreuses conjectures ouvertes.

→ On change de modèle.

Tas de sable abélien

Le modèle classique Problème de la forme limite sur \mathbb{Z}^2

Le modèle *leaky* sur \mathbb{Z}^d

Modèle *leaky*

Problème de la forme limite L'intervention salvatrice des probabilités Convergence du paramètre de fuite

Extension au cas de $\mathbb{Z}^d imes \{1, \dots, p\}$

Description du modèle *leaky*

On étudie la variante "leaky" du modèle, sur $\mathbb{Z}^d.$ Les changements sont :

Description du modèle *leaky*

On étudie la variante "leaky" du modèle, sur $\mathbb{Z}^d.$ Les changements sont :

la quantité de sable n'est plus entière;

On étudie la variante "leaky" du modèle, sur $\mathbb{Z}^d.$ Les changements sont :

- la quantité de sable n'est plus entière;
- on peut donner plus de sable à certains voisins qu'à d'autres;

On étudie la variante "leaky" du modèle, sur $\mathbb{Z}^d.$ Les changements sont :

- la quantité de sable n'est plus entière;
- on peut donner plus de sable à certains voisins qu'à d'autres;
- ➤ à chaque effondrement, une proportion ε ∈]0, 1[du sable disparaît (d'où le nom "leaky").

Description du modèle leaky

Formellement : on se donne une famille $(c(y))_{y \in \mathbb{Z}^d} \in [0, +\infty[^{\mathbb{Z}^d}$ telle que $\sum_{y \in \mathbb{Z}^d} c(y) < +\infty$.

- ► On place *N* grains de sable en 0.
- Tant qu'il existe x ∈ Z^d ayant au moins 1/(1-ε) ∑_{y∈Z^d} c(y) grains de sable :
 - il envoie c(y) grains de sable en x + y pour tout y ∈ Z^d;
 ε/(1-ε) Σ_{y∈Z^d} c(y) grains de sable disparaissent.

Exemple d'un effondrement dans \mathbb{Z}^2

Figure – Gauche : famille des $(c(y))_{y \in \mathbb{Z}^d}$. Droite : morceau d'une configuration initiale.

Exemple d'un effondrement dans \mathbb{Z}^2

Figure – Après effondrement du sommet à 30 grains de sable.

Tas de sable abélien

Le modèle classique Problème de la forme limite sur \mathbb{Z}^2

Le modèle *leaky* sur \mathbb{Z}^d

Modèle *leaky* Problème de la forme limite

L'intervention salvatrice des probabilités Convergence du paramètre de fuite

Extension au cas de $\mathbb{Z}^d imes \{1, \dots, p\}$

On dit qu'un sommet est dans le tas de sable s'il s'est effondré au moins une fois avant stabilisation.

Questions :

▶ Y a-t-il une forme limite quand $N \rightarrow +\infty$? Si oui, comment la décrire ?

^{3.} Ian Alevy et Sevak Mkrtchyan. "The limit shape of the leaky Abelian sandpile model". In : Int. Math. Res. Not. IMRN ().

On dit qu'un sommet est dans le tas de sable s'il s'est effondré au moins une fois avant stabilisation.

Questions :

- ▶ Y a-t-il une forme limite quand $N \rightarrow +\infty$? Si oui, comment la décrire?
- Quelle renormalisation? Est-ce toujours en \sqrt{N} ?

^{3.} Ian Alevy et Sevak Mkrtchyan. "The limit shape of the leaky Abelian sandpile model". In : Int. Math. Res. Not. IMRN ().

On dit qu'un sommet est dans le tas de sable s'il s'est effondré au moins une fois avant stabilisation.

Questions :

- ▶ Y a-t-il une forme limite quand $N \rightarrow +\infty$? Si oui, comment la décrire?
- Quelle renormalisation? Est-ce toujours en \sqrt{N} ?
- Comment la forme varie-t-elle avec ε ?

^{3.} Ian Alevy et Sevak Mkrtchyan. "The limit shape of the leaky Abelian sandpile model". In : Int. Math. Res. Not. IMRN ().

On dit qu'un sommet est dans le tas de sable s'il s'est effondré au moins une fois avant stabilisation.

Questions :

- ▶ Y a-t-il une forme limite quand $N \rightarrow +\infty$? Si oui, comment la décrire?
- Quelle renormalisation? Est-ce toujours en \sqrt{N} ?
- Comment la forme varie-t-elle avec ε ?

Dans [Alevy-Mkrtchyan]³, ces questions sont traitées pour \mathbb{Z}^2 , en donnant la même quantité de sable aux 4 plus proches voisins. On généralise à \mathbb{Z}^d pour une grande classe de familles $(c(y))_{y \in \mathbb{Z}^d}$.

^{3.} Ian Alevy et Sevak Mkrtchyan. "The limit shape of the leaky Abelian sandpile model". In : Int. Math. Res. Not. IMRN ().

Une animation

Figure – Exemple pour N variant de 1000 à 10^{11} avec normalisation par $r_N = \log(N)$.

Une heuristique presque vraie

L'ordre de grandeur $r \simeq \log(N)$ est-il le bon?
Une heuristique presque vraie

L'ordre de grandeur $r \simeq \log(N)$ est-il le bon?

Le sable se déplace du centre vers la sphère de rayon r.

Une heuristique presque vraie

L'ordre de grandeur $r \simeq \log(N)$ est-il le bon?

- \blacktriangleright Le sable se déplace du centre vers la sphère de rayon r.
- Entre chaque sphère, une proportion ε est perdue : à la fin, il ne reste que ≃ N(1 − ε)^r grains.

Une heuristique presque vraie

L'ordre de grandeur $r \simeq \log(N)$ est-il le bon?

- Le sable se déplace du centre vers la sphère de rayon r.
- Entre chaque sphère, une proportion ε est perdue : à la fin, il ne reste que ≃ N(1 − ε)^r grains.
- Ces $N(1-\varepsilon)^r$ grains recouvrent une zone d'aire $\simeq r^2$, d'où $N(1-\varepsilon)^r \simeq r^2$, i.e. $\underbrace{r - \frac{\ln(r^2)}{\ln(1-\varepsilon)}}_{\simeq r} \simeq \frac{\ln(N)}{-\ln(1-\varepsilon)}$, donc

$$r\simeq rac{\ln(N)}{-\ln(1-arepsilon)}.$$

Tas de sable abélien

Le modèle classique Problème de la forme limite sur \mathbb{Z}^2

Le modèle *leaky* sur \mathbb{Z}^d

Modèle *leaky* Problème de la forme limite L'intervention salvatrice des probabilités Convergence du paramètre de fuite

Extension au cas de $\mathbb{Z}^d imes \{1, \dots, p\}$

On associe une marche aléatoire tuée $(X_n)_{n\in\mathbb{N}}$ à la famille $(c(y))_{y\in\mathbb{Z}^d}$.

On associe une marche aléatoire tuée $(X_n)_{n\in\mathbb{N}}$ à la famille $(c(y))_{y\in\mathbb{Z}^d}$.

A chaque étape, la marche est tuée avec probabilité ε .

On associe une marche aléatoire tuée $(X_n)_{n\in\mathbb{N}}$ à la famille $(c(y))_{y\in\mathbb{Z}^d}$.

- A chaque étape, la marche est tuée avec probabilité ε .
- ► Sinon, elle saute de x vers x + y avec proba $(1 \varepsilon) \frac{c(y)}{\sum_{z \in \mathbb{Z}^d} c(z)}$.

On associe une marche aléatoire tuée $(X_n)_{n \in \mathbb{N}}$ à la famille $(c(y))_{y \in \mathbb{Z}^d}$.

- À chaque étape, la marche est tuée avec probabilité ε.
- Sinon, elle saute de x vers x + y avec proba $(1 \varepsilon) \frac{c(y)}{\sum_{z \in \mathbb{Z}^d} c(z)}$.

Sa fonction de Green est

$$G(0,x) = \mathbb{E}_0\left[\sum_{n=0}^{\infty} \mathbb{1}_{X_n=x}\right]$$

C'est le nombre moyen de passages en x, en lançant la marche en 0.

Lien entre tas de sable et marche aléatoire

Proposition

Il existe deux constantes $\alpha,\beta>$ 0 telles que :

- si $G(0,x) > \frac{\alpha}{N}$, alors x est dans le tas de sable;
- si $G(0,x) < \frac{\beta}{N}$, alors x n'est pas dans le tas de sable.

Illustration (dans une direction u fixée)

Figure – Si G décroît assez vite, la zone "?" sera fine. Assez pour disparaître après normalisation par log(N)?

Décroissance de la fonction de Green

Sous de bonnes hypothèses ⁴, l'asymptotique de G(0, x) quand $||x|| \rightarrow +\infty$ est connue :

 $G(0, ru) \simeq \exp(-\gamma_u r).$

5. P. Ney et F. Spitzer. "The Martin boundary for random walk". In : Trans. Amer. Math. Soc. ().

6. Matthieu Dussaule. "The Martin boundary of a free product of abelian groups". In : Ann. Inst. Fourier (Grenoble) ().

7. Théo Ballu. "Asymptotics of Green functions for Markov-additive processes : an approach via dyadic splitting of integrals". In : (2024). arXiv : 2407.10685 [math.PR]. url : https://arxiv.org/abs/2407.10685.

^{4.} Irréductibilité, apériodicité, existence de moments exponentiels de tous ordres.

Décroissance de la fonction de Green

Sous de bonnes hypothèses ⁴, l'asymptotique de G(0, x) quand $||x|| \rightarrow +\infty$ est connue :

$$G(0, ru) \simeq \exp(-\gamma_u r).$$

La décroissance exponentielle dépend de la direction $u \in \mathbb{S}^{d-1}$.

5. P. Ney et F. Spitzer. "The Martin boundary for random walk". In : Trans. Amer. Math. Soc. ().

6. Matthieu Dussaule. "The Martin boundary of a free product of abelian groups". In : Ann. Inst. Fourier (Grenoble) ().

7. Théo Ballu. "Asymptotics of Green functions for Markov-additive processes : an approach via dyadic splitting of integrals". In : (2024). arXiv : 2407.10685 [math.PR]. url : https://arxiv.org/abs/2407.10685.

^{4.} Irréductibilité, apériodicité, existence de moments exponentiels de tous ordres.

Décroissance de la fonction de Green

Sous de bonnes hypothèses ⁴, l'asymptotique de G(0, x) quand $||x|| \rightarrow +\infty$ est connue :

$$G(0, ru) \simeq \exp(-\gamma_u r).$$

La décroissance exponentielle dépend de la direction $u \in \mathbb{S}^{d-1}$.

Littérature : [Ney-Spitzer]⁵, [Dussaule]⁶, [B]⁷ et plein d'autres.

5. P. Ney et F. Spitzer. "The Martin boundary for random walk". In : Trans. Amer. Math. Soc. ().

6. Matthieu Dussaule. "The Martin boundary of a free product of abelian groups". In : Ann. Inst. Fourier (Grenoble) ().

7. Théo Ballu. "Asymptotics of Green functions for Markov-additive processes : an approach via dyadic splitting of integrals". In : (2024). arXiv : 2407.10685 [math.PR]. url : https://arxiv.org/abs/2407.10685.

^{4.} Irréductibilité, apériodicité, existence de moments exponentiels de tous ordres.

Convergence d'ensembles

Définition

La distance de Hausdorff entre deux ensembles A et B est

$$d(A,B) = \max\left(\sup_{x\in A} d(x,B), \sup_{y\in B} d(y,A)\right).$$

Le théorème de convergence

Théorème

Il y a convergence du tas de sable vers une forme limite (au sens de la distance de Hausdorff) après normalisation par $\log(N)$.

Le théorème de convergence

Théorème

Il y a convergence du tas de sable vers une forme limite (au sens de la distance de Hausdorff) après normalisation par $\log(N)$.

La forme limite s'exprime à l'aide du taux de décroissance exponentielle γ_u de $G(0, ru) \simeq \exp(-\gamma_u r)$.

Une animation

Figure – La même animation qu'avant, mais maintenant la convergence est assurée. Mais vers quoi ?

But : identifier la courbe limite (en rouge).

But : identifier la courbe limite (en rouge).

Définition

Soit K un convexe compact tel que $0 \in \mathring{K}$. Soit $x \in \partial K$ tel que l'hyperplan d'équation $n \cdot y = 1$ soit tangent à K. Alors on pose

$$x^* = n.$$

But : identifier la courbe limite (en rouge).

Définition

Soit K un convexe compact tel que $0 \in \mathring{K}$. Soit $x \in \partial K$ tel que l'hyperplan d'équation $n \cdot y = 1$ soit tangent à K. Alors on pose

$$x^* = n.$$

S'il y a plusieurs hyperplans tangents (e.g. : sommet d'un polygone), x^* est un ensemble.

But : identifier la courbe limite (en rouge).

Définition

Soit K un convexe compact tel que $0 \in \mathring{K}$. Soit $x \in \partial K$ tel que l'hyperplan d'équation $n \cdot y = 1$ soit tangent à K. Alors on pose

$$x^* = n$$
.

S'il y a plusieurs hyperplans tangents (e.g. : sommet d'un polygone), x^* est un ensemble. Les x^* forment la **courbe duale** de K. Exemples de courbes duales

Ellipsoïde : la dualité inverse la longueur de chaque axe.

Exemples de courbes duales

Ellipsoïde : la dualité inverse la longueur de chaque axe.

▶ Polytope : soit $x_1, \ldots, x_n \in \mathbb{R}^d$ et

$$\mathcal{K} = \bigcup_{i=1}^n \left\{ y \in \mathbb{R}^d \mid y \cdot x_i \leq 1 \right\}.$$

Alors

$$K^* = \operatorname{conv}\{x_1,\ldots,x_n\}.$$

Par involution, on a aussi le chemin inverse enveloppe convexe \rightarrow intersections de demi-espaces.

Identification de la forme limite

La transformée de Laplace de (X_n) est

$$L(t) = \sum_{y \in \mathbb{Z}^d} e^{t \cdot y} \mathbb{P}_0(X_1 = y).$$

Identification de la forme limite

La transformée de Laplace de (X_n) est

$$L(t) = \sum_{y \in \mathbb{Z}^d} e^{t \cdot y} \mathbb{P}_0(X_1 = y).$$

C'est une fonction **convexe**, donc l'ensemble de niveau $L^{-1}([0, 1])$ est convexe.

Identification de la forme limite

La transformée de Laplace de (X_n) est

$$L(t) = \sum_{y \in \mathbb{Z}^d} e^{t \cdot y} \mathbb{P}_0(X_1 = y).$$

C'est une fonction **convexe**, donc l'ensemble de niveau $L^{-1}([0,1])$ est convexe.

Théorème

La forme limite du tas de sable quand $N \to +\infty$ est la courbe duale de $L^{-1}([0,1])$.

Une animation

Figure – Encore la même animation qu'avant, mais maintenant on connaît la courbe rouge.

Tas de sable abélien

Le modèle classique Problème de la forme limite sur \mathbb{Z}^2

Le modèle *leaky* sur \mathbb{Z}^d

Modèle *leaky* Problème de la forme limite L'intervention salvatrice des probabilités Convergence du paramètre de fuite

Extension au cas de $\mathbb{Z}^d \times \{1, \ldots, p\}$

On étudie l'influence du paramètre de fuite ε sur la forme limite. <u>A</u> lci, on a déjà fait tendre $N \to +\infty$. On étudie l'influence du paramètre de fuite ε sur la forme limite. $\underline{\wedge}$ lci, on a déjà fait tendre $N \rightarrow +\infty$.

On regarde $\varepsilon \to 1$ (presque tout le sable disparaît) et $\varepsilon \to 0$ (presque tout le sable est transmis).

On étudie l'influence du paramètre de fuite ε sur la forme limite. $\underline{\wedge}$ lci, on a déjà fait tendre $N \rightarrow +\infty$.

On regarde $\varepsilon \to 1$ (presque tout le sable disparaît) et $\varepsilon \to 0$ (presque tout le sable est transmis).

Stratégie de preuve : étudier l'ensemble de niveau $L^{-1}([0,1])$ et exploiter la dualité.

$\mathsf{Cas} \, \operatorname{ou} \, \varepsilon \to \mathbf{0}$

Théorème

On normalise en multipliant par $\sqrt{rac{arepsilon}{1-arepsilon}}$.

Alors la forme limite converge (pour Hausdorff) vers un ellipsoïde quand $\varepsilon \rightarrow 0$.

$\mathsf{Cas} \, \operatorname{ou} \, \varepsilon \to \mathbf{0}$

Théorème

On normalise en multipliant par $\sqrt{\frac{\varepsilon}{1-\varepsilon}}$. Alors la forme limite converge (pour Hausdorff) vers un ellipsoïde quand $\varepsilon \rightarrow 0$.

Cet ellipsoïde est $\{x \in \mathbb{R}^d \mid 2x^{\top}\sigma x \leq 1\}$ où σ est la matrice de covariance de la marche non tuée.

Illustration du cas $\varepsilon \rightarrow 0$

Figure – Convergence de la courbe limite quand $\varepsilon \rightarrow 0$.

$\mathsf{Cas} \, \operatorname{ou} \, \varepsilon \to 1$

Théorème

On normalise en multipliant par $-\log(1-\varepsilon)$. Alors la forme limite converge (pour Hausdorff) vers un polytope quand $\varepsilon \rightarrow 1$.

$\mathsf{Cas} \, \operatorname{ou} \, \varepsilon \to 1$

Théorème

On normalise en multipliant par $-\log(1-\varepsilon)$. Alors la forme limite converge (pour Hausdorff) vers un polytope quand $\varepsilon \rightarrow 1$.

Ce polytope est l'enveloppe convexe du support de la marche aléatoire.
Illustration du cas $\varepsilon \to 1$

Figure – Convergence de la courbe limite quand $\varepsilon \rightarrow 1$.

Tas de sable abélien

Le modèle classique Problème de la forme limite sur \mathbb{Z}^2

Le modèle *leaky* sur \mathbb{Z}^d

Modèle *leaky* Problème de la forme limite L'intervention salvatrice des probabilités Convergence du paramètre de fuite

Extension au cas de $\mathbb{Z}^d imes \{1, \dots, p\}$

Une extension

En réalité, on a traité le cas de $\mathbb{Z}^d \times \{1, \dots, p\}$ (p couches de \mathbb{Z}^d).

En réalité, on a traité le cas de $\mathbb{Z}^d \times \{1, \dots, p\}$ (*p* couches de \mathbb{Z}^d).

Le sable envoyé dépend de la couche qui envoie et de celle qui reçoit.

Une extension

En réalité, on a traité le cas de $\mathbb{Z}^d \times \{1, \dots, p\}$ (*p* couches de \mathbb{Z}^d).

Le sable envoyé dépend de la couche qui envoie et de celle qui reçoit.

Tous les résultats précédents ont un analogue dans ce nouveau cadre.

En réalité, on a traité le cas de $\mathbb{Z}^d \times \{1, \dots, p\}$ (*p* couches de \mathbb{Z}^d).

Le sable envoyé dépend de la couche qui envoie et de celle qui reçoit.

Tous les résultats précédents ont un analogue dans ce nouveau cadre.

Remarquable : la forme limite quand $N \to +\infty$ est la même sur toutes les couches de \mathbb{Z}^d .